HDU 6061 推导 NTT
复函数,递归代入,可以得到最终的式子为$f(x-\sum_{i=1}^{m}{a_i})$,且$f(x) = \sum_{i = 0}^{n}{c_ix^i}$,求最终各个x项的系数。
设$S=\sum_{i=1}^{m}{a_i}$
先二项式展开
\begin{eqnarray*} f(x-S)&=&\sum_{i=0}^{n}{c_i{(x-S)}^i} \newline &=&\sum_{i=0}^{n}{ c^i\sum_{j=0}^{i}{ \binom{j}{i}x^{j}(-S)^{i-j} } }\end{eqnarray*}
交换求和符号
\begin{eqnarray*}&=&\sum_{j=0}^{n}{ x^{j} \sum_{i=0}^{n-j}{c_{i+j}\binom{j}{i+j}(-S)^{i}} } \newline &=&\sum_{j=0}^{n}{ x^{j} \sum_{i=0}^{n-j}{c_{i+j}\frac{(i+j)!}{{i!}{j!}}(-S)^{i}} }\newline &=&\sum_{j=0}^{n}{ \frac{x^{j}}{j!} \sum_{i=0}^{n-j}{c_{i+j}(i+j)! \frac{(-S)^{i}}{i!} } }\end{eqnarray*}
因为只要系数,也就是说对于每个j,得到对应的${j!}b_j$,求后一个求和符号里的值就行了
注意到卷积公式$\sum^{n}_{i=0}{f(i)h(n-i)}= f(n)*h(n)$,而且模数998244353是费马素数
故设$k = n - j, A[i] = \frac{(-S)^{i}}{i!},B[i]=c_{k-i-i}(k-i-j)! $,则$C[n - j] =\sum_{i=0}^{j}A[i]B[n-j-i]=\sum_{i=0}^{n-j} c_{i+j}(i+j)! \frac{(-S)^{i}}{i!} $
对A和B使用NTT加速卷积的计算,最后结果在A[i]上,记得反转为A[n-i]。推公式化卷积式,套模板。
#include <bits/stdc++.h> #define LL long long using namespace std; const LL N = 1e5 + 10; const LL mod = 998244353; const int g = 3; const int maxlen = 1 << 18; LL wn[maxlen], fac[N], inv[N]; LL fpow(LL a, LL n) { LL ans = 1; while(n) { if(n & 1) ans = (ans * a % mod + mod) %mod; a = (a * a + mod) % mod; n >>= 1; } return ans; } void init() { wn[0] = 1; wn[1] = fpow(g, ((mod - 1)>>18)); for(int i = 2; i < maxlen; i++) wn[i] = wn[i - 1] * wn[1] % mod; fac[1] = inv[1] = 1; fac[0] = inv[0] = 1; for(int i = 2; i < N; i++) { fac[i] = fac[i - 1] * i % mod; inv[i] = (mod - mod / i) * inv[mod % i] % mod; } for(int i = 1; i < N; i++) (inv[i] *= inv[i - 1]) %= mod; } void rader(LL f[], int len) { for(int i = 1, j = len >> 1; i < len - 1; i++) { if(i < j) swap(f[i], f[j]); int k = len >> 1; while(j >= k) { j -= k; k >>= 1; } if(j < k) j += k; } } void ntt(LL f[], int len, int on) { /*for(int i = 0, j = 0; i < len;i++) { if(i > j) swap(f[i], f[j]); for(int l = len >> 1; (j^=l) < l; l>>=1); }*/ rader(f, len); for(int i = 1, d = 1; d < len; i++, d <<= 1) { //LL wnn = fpow(g, (mod-1)/(d<<1)); for(int j = 0; j < len; j += (d << 1)) { //LL w = 1; for(int k = 0; k < d; k++) { LL t = wn[(maxlen >> i) * k] * f[j + k + d] % mod; //LL t = w*f[j+k+d]%mod; //w = w*wnn % mod; f[j + k + d] = ((f[j + k] - t) % mod + mod) % mod; f[j + k] = ((f[j + k] + t) % mod + mod) % mod; } } } if(on == -1) { reverse(f + 1, f + len); LL inv2 = fpow(len, mod - 2); for(int i = 0; i < len; i++) f[i] = f[i] % mod * inv2 % mod; } } void work(LL a[], LL b[], int len) { ntt(a, len, 1); ntt(b, len, 1); for(int i = 0; i < len; i++) a[i] = (a[i] * b[i] % mod + mod) % mod; ntt(a, len, -1); } LL A[maxlen], B[maxlen], Suma, c[N]; int n, m; int main() { init(); while(~scanf("%d", &n)) { for(int i = 0; i <= n; i++) scanf("%lld", c + i); scanf("%d", &m); Suma = 0; LL t; for(int i = 0; i < m; i++) scanf("%lld", &t), Suma -= t; Suma = (Suma + mod) % mod; while(Suma < 0) Suma += mod; if(Suma == 0) { for(int i = 0; i <= n; i++) printf("%lld ", c[i]); printf("\n"); continue; } //getLength int len = 1; while(len <= 2*n) len <<= 1; // LL ae = 1; for(int i = 0; i < len; i++) { if(i <= n) { B[i] = ae * inv[i] % mod; A[i] =(fac[n - i] * c[n - i]) % mod; } else A[i] = B[i] = 0; ae = (ae * Suma) % mod; //cout << A[i] << "~"<< B[i] << endl; } work(A, B, len); for(int i = 0; i <= n; i++) A[i] = A[i] * inv[n - i] % mod; for(int i = 0; i <= n; i++) printf("%lld ", A[n - i]); printf("\n"); } }