POJ 3304 Segments 基础线段交判断
题意:询问是否存在直线,使得所有线段在其上的投影拥有公共点
思路:如果投影拥有公共区域,那么从投影的公共区域作垂线,显然能够与所有线段相交,那么题目转换为询问是否存在直线与所有线段相交。判断相交先求叉积再用跨立实验。枚举每个线段的起始结束点作为直线起点终点遍历即可。
/** @Date : 2017-07-12 14:35:44 * @FileName: POJ 3304 基础线段交判断.cpp * @Platform: Windows * @Author : Lweleth (SoungEarlf@gmail.com) * @Link : https://github.com/ * @Version : $Id$ */ #include <stdio.h> #include <iostream> #include <string.h> #include <algorithm> #include <utility> #include <vector> #include <map> #include <set> #include <string> #include <stack> #include <queue> #include <math.h> //#include <bits/stdc++.h> #define LL long long #define PII pair<int ,int> #define MP(x, y) make_pair((x),(y)) #define fi first #define se second #define PB(x) push_back((x)) #define MMG(x) memset((x), -1,sizeof(x)) #define MMF(x) memset((x),0,sizeof(x)) #define MMI(x) memset((x), INF, sizeof(x)) using namespace std; const int INF = 0x3f3f3f3f; const int N = 1e5+20; const double eps = 1e-8; struct point { double x, y; point(double _x, double _y){x = _x, y = _y;} point(){} point operator -(const point &b) const { return point(x - b.x, y - b.y); } double operator *(const point &b) const { return x * b.x + y * b.y; } double operator ^(const point &b) const { return x * b.y - y * b.x; } }; struct line { point s, t; line(){} line(point ss, point tt){s = ss, t = tt;} }; double cross(point a, point b) { return a.x * b.y - a.y * b.x; } double xmult(point p1, point p2, point p0) { return (p1 - p0) ^ (p2 - p0); } double distc(point a, point b) { return sqrt((b - a) * (b - a)); } bool opposite(point p1, point p2, line l) { double t = xmult(l.s, l.t, p1) * xmult(l.s, l.t, p2); printf("%.8lf\n", t); return xmult(l.s, l.t, p1) * xmult(l.s, l.t, p2) < -eps; } //线段与线段交 bool Sjudgeinter(line a, line b) { return opposite(b.s, b.t, a) && opposite(a.s, a.t, b); } int sign(double x) { if(fabs(x) < eps) return 0; if(x < 0) return -1; return 1; } //线段与直线交 a为直线 bool judgeinter(line a, line b) { //return opposite(b.s, b.t, a); /*double x = xmult(a.s, a.t, b.s); double y = xmult(a.s, a.t, b.t); printf("@%.4lf %.4lf\n", x, y);*/ return sign(xmult(a.s, a.t, b.s)) * sign(xmult(a.s, a.t, b.t)) <= 0; } int n; point p[200]; line l[200]; bool check(line li) { if(sign(distc(li.s, li.t)) == 0) return 0; for(int i = 0; i < n; i++) if(judgeinter(li, l[i]) == 0) return 0; return 1; } int main() { int T; cin >> T; while(T--) { scanf("%d", &n); for(int i = 0; i < n; i++) { double x1, x2, y1, y2; scanf("%lf%lf%lf%lf", &x1, &y1, &x2, &y2); p[i] = point(x1, y1), p[i + 1] = point(x2, y2); l[i] = line(p[i], p[i + 1]); } int ans = 0; /*for(int i = 0; i < n * 2; i++)//不知道为啥直接枚举所有点就是WA { for(int j = 0; j < n * 2; j++) { if(ans) break; if(i == j || distc(p[i],p[j]) < eps) continue; line tmp = line(p[i], p[j]); if(p[i].x == p[j].x && p[i].y == p[j].y)//考虑到枚举直线为重合点 continue; int flag = 0; for(int k = 0; k < n; k++) { if(k == 1) printf("**"); if(judgeinter(tmp, l[k]) == 0) { flag = 1; break; } } if(!flag) ans = 1; cout << i << "~"<< j << endl; } }*/ for(int i = 0; i < n; i++) { for(int j = 0; j < n; j++) { if(check(line(l[i].s, l[j].s)) || check(line(l[i].s,l[j].t)) || check(line(l[i].t, l[j].s)) || check(line(l[i].t, l[j].t)) ) { ans = 1; break; } } } printf("%s\n", ans?"Yes!":"No!"); } return 0; } //询问是否存在直线,使得所有线段在其上的投影拥有公共点 //如果存在公共区域,对其作垂线,那么其垂线必定过所有的线段 //那么转换为是否存在直线 与所有线段都相交