vijos 1288 箱子游戏 计算几何
背景
hzy是箱子迷,他很喜欢摆放箱子,这次他邀请zdq,skoier一起来玩game...
描述
地板上有一个正方形的大箱子和许多三角型的小箱子。所有的小箱子都在大箱子里面,同时,一些三角形的小箱子可能在另一些小箱子里面,但是所有的小箱子都不相交。你在大箱子里面随机选一个点,它恰好在inBox个小箱子里的概率是多少?我们知道,大箱子的边都平行于坐标轴,并且有两个顶点位于(0,0)和(100,100)。
格式
输入格式
输入的第一行包含两个正整数n和inBox(0 <= inBox <= n <=50),表示小箱子的个数以及随机点在多少个小箱子里面。接下来n行每行包含6个整数x1,y1,x2,y2,x3,y3,表示一个小箱子的三个顶点的坐标。
输出格式
输出仅包含一个数字,表示你计算的概率,精确到小数点后5位。
题意:给出很多三角形,问某个点存在于k个三角形内部的概率为多少
思路:叉积判断两个三角形是否为内含关系,并可以拿来求三角形面积,从三角形面积大到小和是否为内含关系来建一颗树,最后DFS求出k层三角形的面积-k+1层三角形的面积,最后除以总面积即可。
/** @Date : 2016-12-12-21.02 * @Author : Lweleth (SoungEarlf@gmail.com) * @Link : https://github.com/ * @Version : */ #include<bits/stdc++.h> #define LL long long #define PII pair #define MP(x, y) make_pair((x),(y)) #define fi first #define se second #define PB(x) push_back((x)) #define MMG(x) memset((x), -1,sizeof(x)) #define MMF(x) memset((x),0,sizeof(x)) #define MMI(x) memset((x), INF, sizeof(x)) using namespace std; const int INF = 0x3f3f3f3f; const int N = 1e5+20; const double eps = 1e-6; typedef struct str { double x, y; }pot; struct trg { str p1, p2, p3; }; struct node { trg tri; vector son; int h; }; double cross(str &a, str &b) { return a.x*b.y - a.y*b.x; } str creatstr(str &a, str &b) { str x; x.x = a.x - b.x; x.y = a.y - b.y; return x; } int isin(trg &a, trg &b) { str s1 = creatstr(b.p1, a.p1); str s2 = creatstr(b.p1, a.p2); str s3 = creatstr(b.p1, a.p3); double r1 = cross(s1, s2); double r2 = cross(s2, s3); double r3 = cross(s3, s1); double ep1 = fabs(r1); double ep2 = fabs(r2); double ep3 = fabs(r3); if( ((r1 > 0 && r2 > 0 && r3 > 0 )||(r1 < 0 && r2 < 0 && r3 < 0 )||(ep1 < eps || ep2 < eps || ep3 < eps)) != 1) return 0; s1 = creatstr(b.p2, a.p1); s2 = creatstr(b.p2, a.p2); s3 = creatstr(b.p2, a.p3); r1 = cross(s1, s2); r2 = cross(s2, s3); r3 = cross(s3, s1); ep1 = fabs(r1); ep2 = fabs(r2); ep3 = fabs(r3); if( ((r1 > 0 && r2 > 0 && r3 > 0 )||(r1 < 0 && r2 < 0 && r3 < 0 )||(ep1 < eps || ep2 < eps || ep3 < eps)) != 1) return 0; s1 = creatstr(b.p3, a.p1); s2 = creatstr(b.p3, a.p2); s3 = creatstr(b.p3, a.p3); r1 = cross(s1, s2); r2 = cross(s2, s3); r3 = cross(s3, s1); ep1 = fabs(r1); ep2 = fabs(r2); ep3 = fabs(r3); if( ((r1 > 0 && r2 > 0 && r3 > 0 )||(r1 < 0 && r2 < 0 && r3 < 0 )||(ep1 < eps || ep2 < eps || ep3 < eps)) != 1) return 0; else return 1; } double calarea(trg &a) { str s1 = creatstr(a.p1, a.p2); str s2 = creatstr(a.p2, a.p3); double siz = fabs(cross(s1 , s2)) / 2.00000; return siz; } node* insertT(node *h, trg &a) { node *t; if(h == NULL)//到叶子时返回 { t = new node; t->tri = a; t->h = 0; return t; } for(int i = 0; i < h->son.size(); i++) { t = h->son[i]; if(isin(t->tri, a)) { h->son[i] = insertT(t, a); //递归建树 h->son[i]->h = h->h + 1; return h; } } int p = h->son.size(); h->son.PB(insertT(NULL, a)); h->son[p]->h = h->h + 1; return h; } double dfs(node *h, int k) { if (h == NULL) return 0; if (h->h < k) { double sum = 0; for (int i = 0; i < h->son.size(); i++) sum += dfs(h->son[i], k); return sum; } else { double ins = 0; for (int i = 0; i < h->son.size(); i++) ins += calarea(h->son[i]->tri); return calarea(h->tri) - ins; } } int cmp(trg a, trg b) { return calarea(a) > calarea(b); } int main() { trg tri[1010]; int n, k; scanf("%d%d", &n, &k); for(int i = 1; i <= n; i++) { double a, b, c, d, e, f; scanf("%lf%lf%lf%lf%lf%lf", &a, &b, &c, &d, &e, &f); tri[i].p1.x = a; tri[i].p1.y = b; tri[i].p2.x = c; tri[i].p2.y = d; tri[i].p3.x = e; tri[i].p3.y = f; } sort(tri + 1, tri + 1 + n, cmp); tri[0].p1.x = -1000; tri[0].p1.y = -1000; tri[0].p2.x = 1000; tri[0].p2.y = -1000; tri[0].p3.x = 1000; tri[0].p3.y = 2000; node *head = NULL; head = insertT(head, tri[0]); for(int i = 1; i <= n; i++) { head = insertT(head, tri[i]); } double ans = 0; if(k == 0) { double t = 0; for(int i = 0; i < head->son.size(); i++) { t += calarea(head->son[i]->tri); } ans = 10000 - t; } else ans = dfs(head, k); ans /= 10000.000; printf("%.5lf\n", ans); return 0; }