LightOJ 1244 - Tiles 猜递推+矩阵快速幂
http://www.lightoj.com/volume_showproblem.php?problem=1244
题意:给出六种积木,不能旋转,翻转,问填充2XN的格子有几种方法。\(N <= 10^9 \)
思路:首先手写出前几项,猜出递推式,如果真有比赛出这种题,又不能上网进工具站查是吧?N比较大显然用矩阵快速幂优化一下
/** @Date : 2016-12-18-22.44 * @Author : Lweleth (SoungEarlf@gmail.com) * @Link : https://github.com/ * @Version : */ #include<bits/stdc++.h> #define LL long long #define PII pair #define MP(x, y) make_pair((x),(y)) #define fi first #define se second #define PB(x) push_back((x)) #define MMG(x) memset((x), -1,sizeof(x)) #define MMF(x) memset((x),0,sizeof(x)) #define MMI(x) memset((x), INF, sizeof(x)) using namespace std; const int INF = 0x3f3f3f3f; const int N = 1e5+20; const double eps = 1e-8; const LL mod = 1e4 + 7; struct matrix { LL mt[3][3]; void init() { for(int i = 0; i < 3; i++) for(int j = 0; j < 3; j++) mt[i][j] = 0; } void cig() { for(int i = 0; i < 3; i++) mt[i][i] = 1; } }; matrix mul(matrix a, matrix b) { matrix c; c.init(); for(int i = 0; i < 3; i++) { for(int j = 0; j < 3; j++) { for(int k = 0; k < 3; k++) { c.mt[i][j] += a.mt[i][k] * b.mt[k][j]; c.mt[i][j] %= mod; } } } return c; } matrix fpow(matrix a, LL n) { matrix r; r.init(); r.cig(); while(n > 0) { if(n & 1) r = mul(r, a); a = mul(a, a); n >>= 1; } return r; } LL fun(LL n) { if(n < 3) { return n; } matrix base; base.init(); base.mt[0][0] = 2; base.mt[0][2] = 1; base.mt[1][0] = 1; base.mt[2][1] = 1; base = fpow(base, n - 3); return (base.mt[0][0] * 5 + base.mt[0][1] * 2 + base.mt[0][2]) % mod; } int main() { int T; int cnt = 0; cin >> T; while(T--) { LL n; scanf("%lld", &n); LL ans = fun(n); printf("Case %d: %lld\n", ++cnt, ans); } return 0; }