LightOJ 1096 - nth Term 矩阵快速幂
http://www.lightoj.com/volume_showproblem.php?problem=1096
题意:\(f(n) = a * f(n-1) + b * f(n-3) + c, if(n > 2) f(n)= 0, if(n ≤ 2) \)
思路:给出了递推式,构造下4X4矩阵就好。
/** @Date : 2016-12-19-18.55 * @Author : Lweleth (SoungEarlf@gmail.com) * @Link : https://github.com/ * @Version : */ #include<bits/stdc++.h> #define LL long long #define PII pair #define MP(x, y) make_pair((x),(y)) #define fi first #define se second #define PB(x) push_back((x)) #define MMG(x) memset((x), -1,sizeof(x)) #define MMF(x) memset((x),0,sizeof(x)) #define MMI(x) memset((x), INF, sizeof(x)) using namespace std; const int INF = 0x3f3f3f3f; const int N = 1e5+20; const double eps = 1e-8; const LL mod = 1e4 + 7; struct matrix { LL mt[4][4]; void init() { for(int i = 0; i < 4; i++) for(int j = 0; j < 4; j ++) mt[i][j] = 0; } void cig() { for(int i = 0; i < 4; i++) mt[i][i] = 1; } }; matrix mul(matrix a, matrix b) { matrix c; c.init(); for(int i = 0; i < 4; i++) for(int j = 0; j < 4; j++) for(int k = 0; k < 4; k++) { c.mt[i][j] += a.mt[i][k] * b.mt[k][j]; c.mt[i][j] %= mod; } return c; } matrix fpow(matrix a, LL n) { matrix r; r.init(); r.cig(); while(n > 0) { if(n & 1) r = mul(r, a); a = mul(a, a); n >>= 1; } return r; } LL fun(LL a, LL b, LL c, LL n) { if(n < 3) { return 0; } matrix base; base.init(); base.mt[0][0] = a; base.mt[0][2] = b; base.mt[0][3] = c; base.mt[1][0] = 1; base.mt[2][1] = 1; base.mt[3][3] = 1; base = fpow(base, n - 3); LL ans = (base.mt[0][0] * c + base.mt[0][3]) % mod; return ans; } int main() { int T; cin >> T; int cnt = 0; while(T--) { LL n, a, b, c; scanf("%lld%lld%lld%lld", &n, &a, &b, &c); LL ans = fun(a, b, c, n); printf("Case %d: %lld\n", ++cnt, ans); } return 0; }