HUST 1103 校赛 邻接表-拓扑排序
Description
N students were invited to attend a party, every student has some friends, only if someone’s all friends attend this party, this one can attend the party(ofcourse if he/she has no friends, he/she also can attend it.), now i give the friendship between these students, you need to tell me whether all of them can attend the party.
Note that the friendship is not mature, for instance, if a is b’s friend, but b is not necessary a’s friend.
Input
Input starts with an integer T(1 <= T <= 10), denoting the number of test case.
For each test case, first line contains an integer N(1 <= N <= 100000), denoting the number of students.
Next n lines, each lines first contains an integer K, denoting the number of friends belong to student i(indexed from 1). Then following K integers, denoting the K friends.
You can assume that the number of friendship is no more than 100000, and the relation like student A is himself’s friend will not be existed.
Output
For each test case, if all of the students can attend the party, print Yes, otherwise print No.
Sample Input
2
3
1 2
1 3
1 1
3
1 2
0
1 1
Sample Output
No
Yes
HINT
For the first case:
Student 1 can attend party only if student 2 attend it.
Student 1 can attend party only if student 2 attend it.
Student 2 can attend party only if student 3 attend it.
Student 3 can attend party only if student 1 attend it.
So no one can attend the party.
题意:给定n个人, 第i个人依赖k个人,只有k个人都参加了,那么i才会参加。问是否所有人都能参加。
思路:数据量有些大,可能无法用并查集判是否有回路解。学长给出方法是用拓扑排序,最后将节点数量和n比较判断即可。
拓扑排序大致是查找出度为零的所有节点,压入队列,一个个弹出,同时将该点和临边删除。
用到了Vector邻接表,发现储存图真是好用。
但是我的代码还有点问题,vector并不需要开二维的,一维就够了。
1 #include <stdio.h> 2 #include <iostream> 3 #include <string.h> 4 #include <algorithm> 5 #include <vector> 6 #include <queue> 7 #include <utility> 8 #define MAXX 100010 9 using namespace std; 10 const int INF = 0x3f3f3f3f; 11 pair<vector<int>, int> x; 12 vector< vector<int> >bel(100010); 13 queue< vector<int> >qu; 14 int a[MAXX]; 15 int cnt; 16 17 int findpush(int n) 18 { 19 int flag = 1; 20 for(int i = 1; i <= n; i++) 21 { 22 if(a[i] == 0) 23 { 24 flag = 0; 25 if(bel[i].size()) 26 qu.push(bel[i]); 27 else 28 cnt--; 29 a[i] = INF; 30 } 31 } 32 return flag; 33 } 34 35 int main() 36 { 37 int T, n, t, ed; 38 scanf("%d", &T); 39 while(T--) 40 { 41 scanf("%d",&n); 42 cnt = n; 43 44 for(int i = 1; i <= n; i++) 45 a[i] = 0, bel[i].clear(); 46 for(int i = 1; i <= n; i++) 47 { 48 scanf("%d", &t); 49 /* if(!t) 50 cnt--;*/ 51 while(t--) 52 { 53 scanf("%d", &ed); 54 bel[ed].push_back(i); 55 a[i]++; 56 } 57 } 58 while(qu.empty()) 59 { 60 int flag = findpush(n); 61 if(flag == 1) 62 { 63 if(cnt) 64 printf("No\n"); 65 else printf("Yes\n"); 66 break; 67 } 68 int temp = qu.size(); 69 while(temp--) 70 { 71 72 for(int i = 0; i < (qu.front()).size(); i++) 73 { 74 a[(qu.front())[i] ]--; 75 } 76 qu.pop(); 77 cnt--; 78 } 79 } 80 } 81 }