BZOJ 3239--Discrete Logging(BSGS)
3239: Discrete Logging
Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 635 Solved: 413
[Submit][Status][Discuss]
Description
Given a prime P, 2 <= P < 231, an integer B, 2 <= B < P, and an integer N, 2 <= N < P, compute the discrete logarithm of N, base B, modulo P. That is, find an integer L such that
BL = N (mod P)
Input
Read several lines of input, each containing P,B,N separated by a space,
Output
for each line print the logarithm on a separate line. If there are several, print the smallest; if there is none, print "no solution".
The solution to this problem requires a well known result in number theory that is probably expected of you for Putnam but not ACM competitions. It is Fermat's theorem that states
B(P-1)= 1 (mod P)
for any prime P and some other (fairly rare) numbers known as base-B pseudoprimes. A rarer subset of the base-B pseudoprimes, known as Carmichael numbers, are pseudoprimes for every base between 2 and P-1. A corollary to Fermat's theorem is that for any m
B(-m) = B(P-1-m)(mod P)
Sample Input
5 2 2
5 2 3
5 2 4
5 3 1
5 3 2
5 3 3
5 3 4
5 4 1
5 4 2
5 4 3
5 4 4
12345701 2 1111111
1111111121 65537 1111111111
Sample Output
1
3
2
0
3
1
2
0
no solution
no solution
1
9584351
462803587
题目链接:
http://www.lydsy.com/JudgeOnline/problem.php?id=3239
Solution
BSGS的模板题。。。。
对于本题的做法。。一般是先设 L = i * e + j 或 L = i * e - j 。。。
e = ceil(sqrt(P))。。就是假如算出 sqrt(P)= 1.14 ,e就等于2,往大的取整
然后枚举 i 和 j 的值就能做到 O(sqrt(P))。。。
代码
#include<cstdio> #include<cstring> #include<cmath> #include<algorithm> #include<iostream> #include<map> #define LL long long using namespace std; LL P,B,N,e,now; map<LL,int>mp; LL pow(LL p,LL q){ LL s=1; while(q){ if(q&1) s=s*p%P; q>>=1; p=p*p%P; } return s; } void solve(){ mp.clear(); if(N==1 && B>0){ printf("0\n"); return; } if( (!B) && (!N) ){printf("1\n");return;} if(!B){printf("no solution\n");return;} e=ceil(sqrt(P)); now=N%P; for(int j=1;j<=e;j++){ now=now*B%P; if(!mp[now]) mp[now]=j; } B=pow(B,e); now=1; for(int i=1;i<=e;i++){ now=now*B%P; if(mp[now]>0){ N=e*i-mp[now]; printf("%lld\n",N); return; } } printf("no solution\n"); return; } int main(){ while(scanf("%lld%lld%lld",&P,&B,&N)!=EOF) solve(); return 0; }
This passage is made by Iscream-2001.