一文轻松搞定 tarjan 求割点、点双、割边(二)

完结篇:tarjan 求割点、点双连通分量、割边(桥)(附 40 道很好的 tarjan 题目)。

上一篇(tarjan 求强连通分量,缩点,求边双)



tarjan 求割点

还是求强联通分量的大致思路捏.

算法思路:

我们把图中的点分为两种: 每一个联通子图搜索开始的根节点其他点

判断是不是割点的方式如下:

  • 对于根节点
    记一下在跑 tarjan 过程中从这个点出发的未被搜索到的子节点的数量 \(child\),如果 \(child\ge 2\),那么这个点为割点,否则就不是割点;

    • 证明(很简单,建议自己先想一想为什么或者手模个图,实在不懂再看证明):

    设根节点为点 \(u\),如果 \(child\) 为 1 的话,说明根节点的不同子树上的点可以不经过点 \(u\) 而互相到达,也就是说即使删了 \(u\) 点,图中所有点照样可以互相到达,则 \(u\) 不为割点。反之,同样也易证得为割点。

  • 对于其他点
    判断一个点 \(u\) 有没有一个子节点 \(v\) 使得 low[v] >= dfn[u],若存在,则 \(u\) 为割点,否则不为割点。

    • 证明:

    因为我们在无向图中跑 tarjan 时,已经特判父节点或边的编号来避免走“回头路”了(详见上文求边双部分),所以如果满足判断条件时,说明 \(v\) 通过返祖边只能到达 \(u\) 及其子树部分,并不能到达 \(u\) 的祖先节点,所以若 \(u\) 点删去,那么 \(v\) 点便与 \(u\) 以上部分断开了,此时显然 \(u\) 为割点。

会判断这两类点是不是割点之后就做完了,相信大家也知道该怎么求了。看代码吧!

算法代码:

相比于求边双部分增加了数组 cut[x] 来判断 \(x\) 是不是割点,若为 true 则 \(x\) 是割点,否则不是。

void tarjan(int x, int p){
    low[x] = dfn[x] = ++th;
    s[++top] = x; int child = 0;
    for(int i=head[x]; i; i=nxt[i]){
        int y = to[i];
        if(y == p) continue;
        if(!dfn[y]){
            tarjan(y, x);
            low[x] = min(low[x], low[y]);

            if(low[y] >= dfn[x]){
                child++;
                if(p != 0 or child > 1) cut[x] = 1;
            }
        }
        else low[x] = min(low[x], dfn[y]);
    }
}

为什么 p == 0 说明 \(x\) 为根节点呢,大家肯定知道啦!

因为主函数中是这么写的:

    for(int i=1; i<=n; i++)
        if(!dfn[i]) tarjan(i, 0);



tarjan 求点双连通分量

我该先写求点双好呢还是先写求割边好呢,这俩都是需要割点的相关知识的,啊选择困难症(

但是的但是,学会求割点之后那求点双(简称 BCC)就很简单啦 啦啦小魔仙,玛卡巴卡,卡巴露露,摇身变!

算法思路:

性质:无向连通图中割点一定属于至少两个BCC,非割点只属于一个BCC

如此图:2 号点是个割点,其他点则不是。有红、蓝两个 BCC。


有一条显然的结论:每个点双,它在 dfs 时最先被发现的点一定是割点或者 dfs 树的树根

证明:这很显然吧?!根据割点的定义自己理解一下,不证明。算了,还是简单说一下吧:我们知道割点是 BCC 的交点,即 BCC 通过割点连接,从一个 BCC 到另一个 BCC 一定是从经过割点开始的,所以证得。

那么这条结论其实就等价于 每个 BCC 都在其最先被发现的点(一个割点或根节点)的子树中。那么我们在上文求割点方法基础上每找到一个割点(或根节点)后,其子树(包含自己)便是一个点双连通分量了。

实现:

我们还是维护一个栈,存点,每当搜索到一个点时就将该点入栈,找到割点(就是找到一个 BCC)时将栈顶到该割点所有元素依次出栈,(但注意:割点并不出栈,因为上文已说一个割点属于两个 BCC,它还需要来更新另一个 BCC,所以先不出栈,特判就行。)那么出栈的元素以及割点就是所求的点双了。

算法演示:

如上图中,我们以 1 为根开始搜索;

搜索到 2 节点时,继续递归 2 -> 3 -> 4;发现 \(low_4 = 2 < dfn_3\),那么 3 号点则不是割点,回溯;

\(low_3 = dfn_2\),所以 \(2\) 号点是割点,那么将此时栈中从栈顶到 \(2\) 号点所有元素出栈形成点双;

此时栈从栈尾到栈顶依次是:1,2,3,4。那么便是 2,3,4 构成一个点双(但 2 还在栈中)。

继续回溯到 2 -> 1;发现 1 号点是根节点,也将栈中元素出栈(这时 1 是根节点,所以 1 也出栈),那么 1,2 就又构成了一个点双。


算法代码:

void tarjan(int x, int p){
    low[x] = dfn[x] = ++th;
    s[++top] = x;
    if(!p and !head[x]){ // 特判孤点
        BCC[++bcc].emplace_back(x);
        top--; return;
    }
    for(int i=head[x]; i; i=nxt[i]){
        int y = to[i];
        if(y == p) continue;
        if(!dfn[y]){
            tarjan(y, x);
            low[x] = min(low[x], low[y]);
            if(low[y] >= dfn[x] or !p){ //是割点或者根节点
                ++bcc;
                do BCC[bcc].emplace_back(s[top]);
                while(s[top--] != y);
                BCC[bcc].emplace_back(x);
            }
        }
        else low[x] = min(low[x], dfn[y]);
    }
}

例题:

【模板】点双连通分量

板子题练练手。注意这题需要判孤点情况。



tarjan 求割边(桥)

太简单啦!

和割点差不多,改一条:low[y] > dfn[x],并且不需要特判根节点了(因为 边 != 点)。

解释:(在判边保证不走回头路的条件下)\(low_y = dfn_x\) 时,说明不通过从 \(x -> y\) 这条路径, \(y\) 也照样可以回到 \(x\) 节点,那么就保证从 \(y\)\(x\) 有两条路径可走了,所以 \(x->y\) 这条路不是割边。

那么完了!

算法代码:

cut[i] = true; 表示 \(i\) 这条路为割边。

void tarjan(int x, int p){
    low[x] = dfn[x] = ++th;
    s[++top] = x;
    for(int i=head[x]; i; i=nxt[i]){
        int y = to[i];
        if(y == p) continue;
        if(!dfn[y]){
            tarjan(y, x);
            low[x] = min(low[x], low[y]);
            if(low[y] > dfn[x]){ 
                cut[i] = true;
            }
        }
        else low[x] = min(low[x], dfn[y]);
    }
}



题目练习:

这有个很好的 tarjan 题单,从模板到进阶,题都很好,推荐给大家。

所含题目如下
P1656 炸铁路

P1455 搭配购买

P3916 图的遍历

P2835 刻录光盘

P1073 [NOIP2009 提高组] 最优贸易

P2863 [USACO06JAN]The Cow Prom S

P8436 【模板】边双连通分量

P8287 「DAOI R1」Flame

P2002 消息扩散

P2341 [USACO03FALL / HAOI2006] 受欢迎的牛 G

P3387 【模板】缩点

P3388 【模板】割点(割顶)

P8435 【模板】点双连通分量

P1407 [国家集训队]稳定婚姻

P2194 HXY烧情侣

P2746 [USACO5.3]校园网Network of Schools

P2812 校园网络【[USACO]Network of Schools加强版】

P2941 [USACO09FEB]Surround the Islands S

P2860 [USACO06JAN]Redundant Paths G

P3398 仓鼠找 sugar

P2169 正则表达式

P3627 [APIO2009] 抢掠计划

P2656 采蘑菇

P4306 [JSOI2010]连通数

P5676 [GZOI2017]小z玩游戏

P1656 炸铁路

P1455 搭配购买

P3916 图的遍历

P2835 刻录光盘

P1073 [NOIP2009 提高组] 最优贸易

P2863 [USACO06JAN]The Cow Prom S

P8436 【模板】边双连通分量

P8287 「DAOI R1」Flame

P2002 消息扩散

P2341 [USACO03FALL / HAOI2006] 受欢迎的牛 G

P3387 【模板】缩点

P3388 【模板】割点(割顶)

P8435 【模板】点双连通分量

P1407 [国家集训队]稳定婚姻

P2194 HXY烧情侣

P2746 [USACO5.3]校园网Network of Schools

P2812 校园网络【[USACO]Network of Schools加强版】

P2941 [USACO09FEB]Surround the Islands S

P2860 [USACO06JAN]Redundant Paths G

P3398 仓鼠找 sugar

P1262 间谍网络

P4742 [Wind Festival]Running In The Sky

P8867 [NOIP2022] 建造军营

P3469 [POI2008]BLO-Blockade

P2515 [HAOI2010]软件安装

P5058 [ZJOI2004]嗅探器

P7687 [CEOI2005] Critical Network Lines

P7924 「EVOI-RD2」旅行家

P5236 【模板】静态仙人掌

P3225 [HNOI2012]矿场搭建

P4716 【模板】最小树形图

P4126 [AHOI2009]最小割

P6335 [COCI2007-2008#1] STAZA

P4637 [SHOI2011]扫雷机器人

P5236 【模板】静态仙人掌

P4716 【模板】最小树形图

P4436 [HNOI/AHOI2018]游戏



End

历时多天,终于把这两篇 tarjan 写完了。

tarjan 都学了,那下一章包得是圆方树的啦(

\(敬请期待......\)

posted @ 2024-09-10 11:00  Aqr_Rn  阅读(391)  评论(16编辑  收藏  举报