bzoj3503[Cqoi2014]和谐矩阵

bzoj3503[Cqoi2014]和谐矩阵

题意:

我们称一个由0和1组成的矩阵是和谐的,当且仅当每个元素都有偶数个相邻的1。一个元素相邻的元素包括它本身,及他上下左右的4个元素(如果存在)。给定矩阵的行数和列数,计算并输出一个和谐的矩阵。注意:所有元素为0的矩阵是不允许的。行列数≤40

题解:

设矩阵为a,则a[i][j]^a[i+1][j]^a[i-1][j]^a[i][j-1]^a[i][j+1]为0,用i-1替换i则得a[i-1][j]^a[i][j]^a[i-2][j]^a[i-1][j-1]^a[i-1][j+1]=0,每一个元素都与其上面的元素相关,因此可以说第一行的元素决定了所有元素。同时第一行的填法合法当且仅当用第一行推出a[m+1][i]的所有元素都为0。故可以找到a[m+1][j]与第一行哪些元素相关,然后列异或方程组。这个过程可以用二进制弄。如何保证不出现所有元素为0的矩阵出现呢?只要高斯消元时把自由元都当做1就行了,这样一来就必须回代了。反思:二进制操作要用到longlong,然而我强制转换乱写一通导致我wa了n次。尤其是这个地方:M[i][j]=((ll)1<<(j-1)&a[n+1][i])?1:0,我原来是这样写的M[i][j]=((ll)(1<<(j-1)&a[n+1][i])?1:0,这两种解法不同是因为后者先将乘法算出来并溢出了,然后才被转换,而前者不同是因为它把乘数转换了,而longlong*int的结果为longlong故不会溢出,以后要记牢这一点。

代码:

 1 #include <cstdio>
 2 #include <cstring>
 3 #include <algorithm>
 4 #include <bitset>
 5 #define maxn 50
 6 #define inc(i,j,k) for(int i=j;i<=k;i++)
 7 #define ll long long
 8 using namespace std;
 9 
10 bitset <maxn> M[maxn];
11 ll a[maxn][maxn];int b[maxn][maxn],n,m;
12 void gauss(){
13     int now=0,pos;
14     inc(i,1,m){
15         for(pos=now+1;pos<=m&&!M[pos][i];pos++); if(pos>m)continue;
16         now++; swap(M[pos],M[now]); inc(j,now+1,m)if(M[j][i])M[j]^=M[now];
17     }
18     for(int i=m;i>=1;i--){
19         b[1][i]=M[i][m+1]; if(!M[i][i]){b[1][i]=1; continue;} inc(j,i+1,m)if(M[i][j])b[1][i]^=b[1][j];
20     }
21 }
22 int main(){
23     scanf("%d%d",&n,&m); inc(i,1,m)a[1][i]=(ll)1<<(i-1);
24     inc(i,2,n+1)inc(j,1,m)a[i][j]=a[i-2][j]^a[i-1][j-1]^a[i-1][j+1]^a[i-1][j];
25     inc(i,1,m){inc(j,1,m)M[i][j]=((ll)1<<(j-1)&a[n+1][i])?1:0; M[i][m+1]=0;} gauss();
26     inc(i,2,n)inc(j,1,m)b[i][j]=b[i-2][j]^b[i-1][j-1]^b[i-1][j+1]^b[i-1][j];
27     inc(i,1,n){inc(j,1,m-1)printf("%d ",b[i][j]); printf("%d\n",b[i][m]);}
28     return 0;
29 }

 

20160616

posted @ 2016-08-17 14:28  YuanZiming  阅读(347)  评论(0编辑  收藏  举报