bzoj4591[Shoi2015]超能粒子炮·改

bzoj4591[Shoi2015]超能粒子炮·改

题意:

求(sigma(i,0,k)C(n,i))%2333。n,k≤1018

题解:

根据Lucas定理(我不会),C(n,k)%2333=C(n/2333,k/2333)*C(n%2333,k%2333),故可以进行一些化简(把模省去了)

(sigma(i,0,k)C(n,i))=sigma(i,0,k)C(n/2333,i/2333)*C(n%2333,i%2333)

                           =sigma(i,0,k/2333-1)C(n/2333,i)*(sigma(j,0,2332)C(n%2333,j))+C(n/2333,k/2333)*sigma(i,0,k%2333)C(n%2333,i)

一开始先递推出i,j≤2333的C[i][j]和sm[i][j](表示sigma(k,0,j)C[i][k]),然后上式橙色部分可以看做红色部分的简化部分,递归求解直到n,k的范围≤2333就return sm[n][k],同时上式中蓝色部分也可以用Lucas定理递归求解到n,k范围≤2333return C[n][k]。

代码:

 1 #include <cstdio>
 2 #include <cstring>
 3 #include <algorithm>
 4 #define inc(i,j,k) for(int i=j;i<=k;i++)
 5 #define ll long long
 6 #define maxn 2334
 7 #define mod 2333
 8 using namespace std;
 9 
10 inline ll read(){
11     char ch=getchar(); ll f=1,x=0;
12     while(ch<'0'||ch>'9'){if(ch=='-')f=-1; ch=getchar();}
13     while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();
14     return f*x;
15 }
16 ll n,k,c[maxn][maxn],sm[maxn][maxn]; int t;
17 void calc(){
18     c[0][0]=sm[0][0]=1; inc(i,1,mod)sm[0][i]=1;
19     inc(i,1,mod){
20         c[i][0]=sm[i][0]=1;
21         inc(j,1,i)c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
22         inc(j,1,mod)sm[i][j]=(sm[i][j-1]+c[i][j])%mod;
23     }
24 }
25 ll solvec(ll n,ll k){
26     if(n<=mod&&k<=mod)return c[n][k];else return solvec(n/mod,k/mod)*c[n%mod][k%mod]%mod;
27 }
28 ll solvesm(ll n,ll k){
29     if(k<mod)return solvec(n/mod,k/mod)*sm[n%mod][k%mod]%mod;
30     return (solvesm(n/mod,k/mod-1)*sm[n%mod][mod-1]%mod+solvec(n/mod,k/mod)*sm[n%mod][k%mod]%mod)%mod;
31 }
32 int main(){
33     t=read(); calc();
34     inc(i,1,t){n=read(); k=read(); printf("%lld\n",solvesm(n,k)%mod);}
35     return 0;
36 }

 

20160724

posted @ 2016-07-24 21:54  YuanZiming  阅读(302)  评论(0编辑  收藏  举报