Sympy常用函数总结

基础

from sympy import *

数学格式输出:

init_printing()

添加变量:

x, y, z, a, b, c = symbols('x y z a b c')

声明分数:

Rational(1, 3)

\(\displaystyle \frac{1}{3}\)

化简式子:

simplify((x**3 + x**2 - x - 1)/(x**2 + 2*x + 1))

\(\displaystyle x - 1\)

因式分解:

expand((x + 2)*(x - 3))

\(\displaystyle x^{2} - x - 6\)

提取公因式:

factor(x**3 - x**2 + x - 1)

\(\displaystyle \left(x - 1\right) \left(x^{2} + 1\right)\)

约分:

cancel((x**2 + 2*x + 1)/(x**2 + x))

\(\displaystyle \frac{x + 1}{x}\)

裂项:

apart((4*x**3 + 21*x**2 + 10*x + 12)/(x**4 + 5*x**3 + 5*x**2 + 4*x))

\(\displaystyle \frac{2 x - 1}{x^{2} + x + 1} - \frac{1}{x + 4} + \frac{3}{x}\)

变换形式:

tan(x).rewrite(sin)

\(\displaystyle \frac{2 \sin^{2}{\left(x \right)}}{\sin{\left(2 x \right)}}\)

数列求和:

Sum(x ** 2, (x, 1, a)).doit()

\(\displaystyle \frac{a^{3}}{3} + \frac{a^{2}}{2} + \frac{a}{6}\)

数列求积:

Product(x**2,(x, 1, a)).doit()

\(\displaystyle a!^{2}\)

微积分

求导:

diff(cos(x), x)

\(\displaystyle - \sin{\left(x \right)}\)

求高阶导:

diff(x**4, x, 3)

\(\displaystyle 24 x\)

连续求偏导:

diff(exp(x*y*z), x, y, 2, z, 4)

\(\displaystyle x^{3} y^{2} \left(x^{3} y^{3} z^{3} + 14 x^{2} y^{2} z^{2} + 52 x y z + 48\right) e^{x y z}\)

不定积分:

integrate(cos(x), x)

\(\displaystyle \sin{\left(x \right)}\)

定积分:

integrate(exp(-x), (x, 0, oo))

\(\displaystyle 1\)

多重积分:

integrate(exp(-x**2 - y**2), (x, -oo, oo), (y, -oo, oo))

\(\displaystyle \pi\)

极限:

limit(sin(x)/x, x, 0)

\(\displaystyle 1\)

泰勒展开(到第4阶):

sin(x).series(x, 0, 4)

\(\displaystyle x - \frac{x^{3}}{6} + O\left(x^{4}\right)\)

泰勒展开(在x=6处):

exp(x - 6).series(x, 6)

\(\displaystyle -5 + \frac{\left(x - 6\right)^{2}}{2} + \frac{\left(x - 6\right)^{3}}{6} + \frac{\left(x - 6\right)^{4}}{24} + \frac{\left(x - 6\right)^{5}}{120} + x + O\left(\left(x - 6\right)^{6}; x\rightarrow 6\right)\)

矩阵

矩阵求逆:

Matrix([[1, 3], [-2, 3]])**-1

\(\displaystyle \left[\begin{matrix}\frac{1}{3} & - \frac{1}{3}\\\frac{2}{9} & \frac{1}{9}\end{matrix}\right]\)

求转置:

Matrix([[1, 2, 3], [4, 5, 6]]).T

\(\displaystyle \left[\begin{matrix}1 & 4\\2 & 5\\3 & 6\end{matrix}\right]\)

生成单位矩阵:

eye(3)

\(\displaystyle \left[\begin{matrix}1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1\end{matrix}\right]\)

求行列式:

Matrix([[1, 0, 1], [2, -1, 3], [4, 3, 2]]).det()

\(\displaystyle -1\)

化成行阶梯形矩阵:

Matrix([[1, 0, 1, 3], [2, 3, 4, 7], [-1, -3, -3, -4]]).rref()

\(\displaystyle \left( \left[\begin{matrix}1 & 0 & 1 & 3\\0 & 1 & \frac{2}{3} & \frac{1}{3}\\0 & 0 & 0 & 0\end{matrix}\right], \ \left( 0, \ 1\right)\right)\)

求列向量空间:

Matrix([[1, 1, 2], [2 ,1 , 3], [3 , 1, 4]]).columnspace()

\(\displaystyle \left[ \left[\begin{matrix}1\\2\\3\end{matrix}\right], \ \left[\begin{matrix}1\\1\\1\end{matrix}\right]\right]\)

M = Matrix([[3, -2,  4, -2], [5,  3, -3, -2], [5, -2,  2, -2], [5, -2, -3,  3]])

求特征值:

M.eigenvals()

\(\displaystyle \left\{ -2 : 1, \ 3 : 1, \ 5 : 2\right\}\)

求特征向量:

M.eigenvects()

\(\displaystyle \left[ \left( -2, \ 1, \ \left[ \left[\begin{matrix}0\\1\\1\\1\end{matrix}\right]\right]\right), \ \left( 3, \ 1, \ \left[ \left[\begin{matrix}1\\1\\1\\1\end{matrix}\right]\right]\right), \ \left( 5, \ 2, \ \left[ \left[\begin{matrix}1\\1\\1\\0\end{matrix}\right], \ \left[\begin{matrix}0\\-1\\0\\1\end{matrix}\right]\right]\right)\right]\)

求对角化矩阵,返回两个矩阵P、D满足\(PDP^{-1}=M\)

M.diagonalize()

\(\displaystyle \left( \left[\begin{matrix}0 & 1 & 1 & 0\\1 & 1 & 1 & -1\\1 & 1 & 1 & 0\\1 & 1 & 0 & 1\end{matrix}\right], \ \left[\begin{matrix}-2 & 0 & 0 & 0\\0 & 3 & 0 & 0\\0 & 0 & 5 & 0\\0 & 0 & 0 & 5\end{matrix}\right]\right)\)

解方程

求解集:

solveset(x**2 - x, x)

\(\displaystyle \left\{0, 1\right\}\)

求解集(显示多少个重根):

roots(x**3 - 6*x**2 + 9*x, x)

\(\displaystyle \left\{ 0 : 1, \ 3 : 2\right\}\)

求解集(用Eq构造等式):

solveset(Eq(sin(x), 1), x, domain=S.Reals)

\(\displaystyle \left\{2 n \pi + \frac{\pi}{2}\; |\; n \in \mathbb{Z}\right\}\)

解线性方程组:

linsolve([x + y + z - 1, x + y + 2*z - 3 ], (x, y, z))

\(\displaystyle \left\{\left( - y - 1, \ y, \ 2\right)\right\}\)

解线性方程组(矩阵表示):

linsolve(Matrix(([1, 1, 1, 1], [1, 1, 2, 3])), (x, y, z))

\(\displaystyle \left\{\left( - y - 1, \ y, \ 2\right)\right\}\)

解非线性方程组:

nonlinsolve([exp(x) - sin(y), 1/y - 3], [x, y])

\(\displaystyle \left\{\left( \log{\left(\sin{\left(\frac{1}{3} \right)} \right)}, \ \frac{1}{3}\right), \left( \left\{2 n i \pi + \left(\log{\left(\sin{\left(\frac{1}{3} \right)} \right)}\bmod{2 i \pi}\right)\; |\; n \in \mathbb{Z}\right\}, \ \frac{1}{3}\right)\right\}\)

解微分方程:

f, g = symbols('f g', cls=Function)
dsolve(Eq(f(x).diff(x, x) - 2*f(x).diff(x) + f(x), sin(x)), f(x))

\(\displaystyle f{\left(x \right)} = \left(C_{1} + C_{2} x\right) e^{x} + \frac{\cos{\left(x \right)}}{2}\)

解不等式组:

from sympy.solvers.inequalities import *
reduce_inequalities([x <= x ** 2], [x])

\(\displaystyle \left(1 \leq x \wedge x < \infty\right) \vee \left(x \leq 0 \wedge -\infty < x\right)\)

逻辑代数

from sympy.logic.boolalg import *

合取范式:

to_cnf(~(x | y) | z)

\(\displaystyle \left(z \vee \neg x\right) \wedge \left(z \vee \neg y\right)\)

析取范式:

to_dnf(x & (y | z))

\(\displaystyle \left(x \wedge y\right) \vee \left(x \wedge z\right)\)

化简逻辑函数:

simplify_logic((~x & ~y & ~z) | ( ~x & ~y & z))

\(\displaystyle \neg x \wedge \neg y\)

from sympy.logic import *

化简最小项之和为析取范式

minterms = [0, 7]
SOPform([x, y, z], minterms)

\(\displaystyle \left(x \wedge y \wedge z\right) \vee \left(\neg x \wedge \neg y \wedge \neg z\right)\)

化简最小项之和为合取范式

minterms = [[1, 0, 1], [1, 1, 0], [1, 1, 1]]
POSform([x, y, z], minterms)

\(\displaystyle x \wedge \left(y \vee z\right)\)

化简最小项之和为析取范式(第7项任取)

minterms = [[1, 0, 1], [1, 1, 0]]
dontcares = [7]
SOPform([x, y, z], minterms, dontcares)

\(\displaystyle \left(x \wedge y\right) \vee \left(x \wedge z\right)\)

数论

from sympy.ntheory import *

阶乘:

factorial(10)

\(\displaystyle 3628800\)

分解质因数:

factorint(300)

\(\displaystyle \left\{ 2 : 2, \ 3 : 1, \ 5 : 2\right\}\)

factorint(300, visual=True)

\(\displaystyle 2^{2} \cdot 3^{1} \cdot 5^{2}\)

求欧拉函数:

totient(25)

\(\displaystyle 20\)

判断质数:

isprime(101)
True

莫比乌斯函数:

mobius(13 * 17 * 5)

\(\displaystyle -1\)

乘法逆元(模后者意义):

mod_inverse(3, 5)

\(\displaystyle 2\)

from sympy.ntheory.factor_ import *

求因子:

divisors(36)

\(\displaystyle \left[ 1, \ 2, \ 3, \ 4, \ 6, \ 9, \ 12, \ 18, \ 36\right]\)

from sympy.ntheory.modular import *

中国剩余定理解同余方程(模数需互质,前三个数为模数,后三个数为余数,返回第一个数为结果):

crt([99, 97, 95], [49, 76, 65])

\(\displaystyle \left( 639985, \ 912285\right)\)

解同余方程(模数不需互质但比中国剩余定理慢,每个元组第一个数为余数,第二个数为模数,返回第一个数为结果):

solve_congruence((2, 3), (3, 5), (2, 7))

\(\displaystyle \left( 23, \ 105\right)\)

from sympy.ntheory.residue_ntheory import *

求原根(如下2在模19意义下的所有幂占满了0到18):

primitive_root(19)

\(\displaystyle 2\)

求离散对数(如下\(7^3 mod 15 = 41\)):

discrete_log(41, 15, 7)

\(\displaystyle 3\)

posted @ 2020-06-09 10:17  YuanZiming  阅读(3480)  评论(0编辑  收藏  举报