[Luogu 1516] 青蛙的约会

Description

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。

我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。

Input

输入只包括一行5个整数x,y,m,n,L

其中0<x≠y < =2000000000,0 < m、n < =2000000000,0 < L < =2100000000。

Output

输出碰面所需要的天数,如果永远不可能碰面则输出一行"Impossible"。

Solution

原问题即求一个 k,满足 $$x + k \times m \equiv y + k \times n \quad (mod\;l)$$

变一下形: $$(x-y) + k \times (m-n) \equiv 0 \quad (mod\;l)$$

$$(x-y) +  k \times (m-n) + p \times l = 0$$

$$k \times (m-n) + p \times l = y-x$$

那么原方程有解当且仅当 $gcd(m-n,l) \mid y-x$,这里即可做出判断。

下一步怎么办呢?

我们先求出 $k_0 \times (m-n) + p_0 \times l = gcd(m-n,l)$ 的一组解 $k_0,p_0$

然后 $k=k_0 \times (y-x)/gcd(m-n,l)$  即为原方程的一组解

方程的通解即为所有模 $l/gcd(m-n,l)$ 与 $k$ 同余的整数。

Code

 

#include<cstdio>
#define int long long 

int x,y,m,n,l;

int exgcd(int a,int b,int &x,int &y){
    if(!b){
        x=1;y=0;
        return a;
    }
    int c=exgcd(b,a%b,x,y);
    int t=x;
    x=y;
    y=t-a/b*y;
    return c;
}

int gcd(int a,int b){
    if(!b) return a;
    return gcd(b,a%b);
}

signed main(){
    scanf("%lld%lld%lld%lld%lld",&x,&y,&m,&n,&l);
    int k,p;
    int pd=gcd(m-n,l);
    if((y-x)%pd) {
        printf("Impossible");
        return 0;
    }
    exgcd(m-n,l,k,p);
    int ans=k*(y-x)/gcd(m-n,l);
    int mod=l/gcd(m-n,l);
    if(mod<0) mod=-mod;
    printf("%lld\n",(ans%mod+mod)%mod);
    return 0;
}

 

 

 

posted @ 2018-04-24 22:56  YoungNeal  阅读(212)  评论(0编辑  收藏  举报