[PKUWC2018] Minimax
Description
给定一棵 \(n\) 个节点的树,每个节点最多有两个子节点。
如果 \(x\) 是叶子,则给定 \(x\) 的权值;否则,它的权值有 \(p_x\) 的概率是它子节点中权值的较大值,\(1-p_x\) 的概率是它子节点中权值的较小值。保证叶子结点权值互不相同。
求根节点所有可能的权值的概率。模 \(998244353\)。
Solution
嗯比较自然的一道题。
设 \(f_{i,x}\) 为结点 \(i\) 权值为 \(x\) 的概率,\(l,r\) 分别是点 \(i\) 的左右子树,则有(假设权值 \(x\) 在 \(l\) 中出现):
\[f_{i,x}=\sum_{j=1}^{x-1}f_{l,x}\cdot f_{r,j}\cdot p_i+\sum_{j=x+1}^n f_{i,x}\cdot f_{r,j}\cdot (1-p_i)
\]
发现这上是一个合并的过程,可以拿线段树合并做。
中间维护两棵树的前缀和后缀和,以及打好标记即可。
Code
LOJ格式化代码真好玩
我能玩一天
放上被LOJ格式化之后的代码
#include <bits/stdc++.h>
using std::max;
using std::min;
using std::swap;
using std::vector;
typedef double db;
typedef long long ll;
#define pb(A) push_back(A)
#define pii std::pair<int, int>
#define all(A) A.begin(), A.end()
#define mp(A, B) std::make_pair(A, B)
#define int long long
const int N = 3e5 + 5;
const int M = N * 20;
const int mod = 998244353;
int sum[M], flag[M], inv;
int val[N], g[N], is[N], ans;
int n, cnt, leaf, head[N], lef;
int ch[M][2], tot, len, rt[N];
struct Edge {
int to, nxt;
} edge[N << 1];
#define ls ch[x][0]
#define rs ch[x][1]
void pushup(int x) { sum[x] = (sum[ls] + sum[rs]) % mod; }
void pushdown(int x) {
if (flag[x] != 1) {
(flag[ls] *= flag[x]) %= mod;
(flag[rs] *= flag[x]) %= mod;
(sum[ls] *= flag[x]) %= mod;
(sum[rs] *= flag[x]) %= mod;
flag[x] = 1;
}
}
void modify(int &x, int l, int r, int ql) {
x = ++tot;
flag[x] = 1;
if (l == r)
return sum[x] = 1, void();
int mid = l + r >> 1;
ql <= mid ? modify(ls, l, mid, ql) : modify(rs, mid + 1, r, ql);
pushup(x);
}
#undef ls
#undef rs
int merge(int x, int y, int aqzh, int ahzh, int bqzh, int bhzh, int pi) {
if (!x and !y)
return 0;
if (!x) {
pushdown(y);
(sum[y] *= ahzh * (1 - pi + mod) % mod + aqzh * pi % mod) %= mod;
(flag[y] *= ahzh * (1 - pi + mod) % mod + aqzh * pi % mod) %= mod;
return y;
}
if (!y) {
pushdown(x);
(sum[x] *= bhzh * (1 - pi + mod) % mod + bqzh * pi % mod) %= mod;
(flag[x] *= bhzh * (1 - pi + mod) % mod + bqzh * pi % mod) %= mod;
return x;
}
int now = ++tot;
flag[now] = 1;
pushdown(x), pushdown(y);
int a = sum[ch[x][0]], b = sum[ch[y][0]];
ch[now][0] =
merge(ch[x][0], ch[y][0], aqzh, (ahzh + sum[ch[x][1]]) % mod, bqzh, (bhzh + sum[ch[y][1]]) % mod, pi);
ch[now][1] = merge(ch[x][1], ch[y][1], (aqzh + a) % mod, ahzh, (bqzh + b) % mod, bhzh, pi);
pushup(now);
return now;
}
void add(int x, int y) {
edge[++cnt].to = y;
edge[cnt].nxt = head[x];
head[x] = cnt;
}
int ksm(int a, int b, int ans = 1) {
while (b) {
if (b & 1)
ans = ans * a % mod;
a = a * a % mod;
b >>= 1;
}
return ans;
}
int getint() {
int X = 0, w = 0;
char ch = getchar();
while (!isdigit(ch)) w |= ch == '-', ch = getchar();
while (isdigit(ch)) X = X * 10 + ch - 48, ch = getchar();
if (w)
return -X;
return X;
}
void dfs(int now) {
if (!is[now])
return;
int tot = 0;
for (int i = head[now]; i; i = edge[i].nxt) {
int to = edge[i].to;
tot++;
dfs(to);
}
if (tot == 1) {
for (int i = head[now]; i; i = edge[i].nxt) {
int to = edge[i].to;
rt[now] = rt[to];
}
} else {
tot = 0;
int a, b;
for (int i = head[now]; i; i = edge[i].nxt) {
int to = edge[i].to;
tot == 1 ? b = to : a = to, tot++;
}
rt[now] = merge(rt[a], rt[b], 0, 0, 0, 0, val[now] * inv % mod);
}
}
void dfs2(int now, int l, int r) {
if (!now)
return;
pushdown(now);
if (l == r)
return (ans += (lef + 1) * g[l] % mod * sum[now] % mod * sum[now] % mod) %= mod, lef++, void();
int mid = l + r >> 1;
dfs2(ch[now][0], l, mid);
dfs2(ch[now][1], mid + 1, r);
}
signed main() {
n = getint();
getint();
inv = ksm(10000, mod - 2);
for (int i = 2; i <= n; i++) {
int x = getint();
add(x, i);
is[x] = 1;
}
for (int i = 1; i <= n; i++) {
val[i] = getint();
if (!is[i])
g[++len] = val[i];
}
std::sort(g + 1, g + 1 + len);
len = std::unique(g + 1, g + 1 + len) - g - 1;
for (int i = 1; i <= n; i++) {
if (!is[i]) {
val[i] = std::lower_bound(g + 1, g + 1 + len, val[i]) - g;
modify(rt[i], 1, len, val[i]);
}
}
dfs(1);
dfs2(rt[1], 1, len);
printf("%lld\n", ans);
return 0;
}
当你走进这欢乐场