我们通常使用tensorboard 统计我们的accurate ,loss等,并绘制曲线,通常是使用一次训练中的,

但是,机器学习中通常要对比不同的 ‘超参数’给模型训练和预测能力的不同这时候如何整合多个训练模型的训练

等情况呢?

 

其实我们可以讲不同训练结果放在一个大文件夹中,比如训练不同learning_rate=0.1 ,0.2,0.3

我们通常是:

tensorborad logdir=/.../miniset/learnrate=0.1/

tensorborad logdir=/.../miniset/learnrate=0.2/

tensorborad logdir=/.../miniset/learnrate=0.3/

分别查看不同learning_rate下单次训练的结果,如果要看对比可以使用:

tensorborad logdir=/.../miniset/

具体见17年tensor flow开发者峰会的video:

https://v.qq.com/x/page/t0501opw5fi.html