一文详解bundle adjustment
作者:李城
来源:微信公众号|3D视觉工坊(系投稿)
3D视觉精品文章汇总:https://github.com/qxiaofan/awesome-3D-Vision-Papers/
bundle adjustment 的历史发展
bundle adjustment,中文名称是光束法平差,经典的BA目的是优化相机的pose和landmark,其在SfM和SLAM 领域中扮演者重要角色.目前大多数书籍或者参老文献将其翻译成"捆绑调整"是不太严谨的做法.bundle adjustment 最早是19世纪由搞大地测量学(测绘学科)的人提出来的,19世纪中期的时候,geodetics的学者就开始研究large scale triangulations(大型三角剖分)。20世纪中期,随着camera和computer的出现,photogrammetry(摄影测量学)也开始研究adjustment computation,所以他们给起了个名字叫bundle adjustment(隶属摄影测量学科前辈的功劳)。21世纪前后,robotics领域开始兴起SLAM,最早用的recursive bayesian filter(递归贝叶斯滤波),后来把问题搞成个graph然后用least squares方法求解,bundle adjusment历史发展图如下:
bundle adjustment 其本质还是离不开最小二乘原理(Gauss功劳)(几乎所有优化问题其本质都是最小二乘),目前bundle adjustment 优化框架最为代表的是ceres solver和g2o(这里主要介绍ceres solver).据说ceres的命名是天文学家Piazzi闲暇无事的时候观测一颗没有观测到的星星,最后用least squares算出了这个小行星的轨道,故将这个小行星命名为ceres.
Bundle adjustment 的算法理论
观测值:像点坐标 优化量(平差量):pose 和landmark 因为一旦涉及平差,就必定有如下公式:观测值+观测值改正数=近似值+近似值改正数,那么bundle adjustment 的公式还是从共线条件方程出发:
四种Bundle adjustment 算法代码
这里代码主要从四个方面来介绍:
- 优化相机内参及畸变系数,相机的pose(6dof)和landmark 代价函数写法如下:
template <typename CameraModel>
class BundleAdjustmentCostFunction {
public:
explicit BundleAdjustmentCostFunction(const Eigen::Vector2d& point2D)
: observed_x_(point2D(0)), observed_y_(point2D(1)) {}
//构造函数传入的是观测值
static ceres::CostFunction* Create(const Eigen::Vector2d& point2D) {
return (new ceres::AutoDiffCostFunction<
BundleAdjustmentCostFunction<CameraModel>, 2, 4, 3, 3,
CameraModel::kNumParams>(
new BundleAdjustmentCostFunction(point2D)));
}
//优化量:2代表误差方程个数;4代表pose中的姿态信息,用四元数表示;3代表pose中的位置信息;3代表landmark
自由度;CameraModel::kNumParams是相机内参和畸变系数,其取决于相机模型是what
// opertator 重载函数的参数即是待优化的量
template <typename T>
bool operator()(const T* const qvec, const T* const tvec,
const T* const point3D, const T* const camera_params,
T* residuals) const {
// Rotate and translate.
T projection[3];
ceres::UnitQuaternionRotatePoint(qvec, point3D, projection);
projection[0] += tvec[0];
projection[1] += tvec[1];
projection[2] += tvec[2];
// Project to image plane.
projection[0] /= projection[2];
projection[1] /= projection[2];
// Distort and transform to pixel space.
CameraModel::WorldToImage(camera_params, projection[0], projection[1],
&residuals[0], &residuals[1]);
// Re-projection error.
residuals[0] -= T(observed_x_);
residuals[1] -= T(observed_y_);
return true;
}
private:
const double observed_x_;
const double observed_y_;
};
写好了代价函数,下面就是需要把参数都加入残差块,让ceres自动求导,代码如下:
ceres::Problem problem;
ceres::CostFunction* cost_function = nullptr;
ceres::LossFunction * p_LossFunction =
ceres_options_.bUse_loss_function_ ?
new ceres::HuberLoss(Square(4.0))
: nullptr; // 关于为何使用损失函数,因为现实中并不是所有观测过程中的噪声都服从
//gaussian noise的(或者可以说几乎没有),
//遇到有outlier的情况,这些方法非常容易挂掉,
//这时候就得用到robust statistics里面的
//robust cost(*cost也可以叫做loss, 统计学那边喜欢叫risk) function了,
//比较常用的有huber, cauchy等等。
cost_function = BundleAdjustmentCostFunction<CameraModel>::Create(point2D.XY());
//将优化量加入残差块
problem_->AddResidualBlock(cost_function, p_LossFunction, qvec_data,
tvec_data, point3D.XYZ().data(),
camera_params_data);
如上,case1 的bundle adjustment 就搭建完成!
- 优化相机内参及畸变系数,pose subset parameterization(pose 信息部分参数优化)和3D landmark,当 只优化姿态信息时候,problem需要添加的代码如下:
//这里姿态又用欧拉角表示
map_poses[indexPose] = {angleAxis[0], angleAxis[1], angleAxis[2], t(0), t(1), t(2)};
double * parameter_block = &map_poses.at(indexPose)[0];
problem.AddParameterBlock(parameter_block, 6);
std::vector<int> vec_constant_extrinsic;
vec_constant_extrinsic.insert(vec_constant_extrinsic.end(), {3,4,5});
if (!vec_constant_extrinsic.empty())
{
// 主要用到ceres的SubsetParameterization函数
ceres::SubsetParameterization *subset_parameterization =
new ceres::SubsetParameterization(6, vec_constant_extrinsic);
problem.SetParameterization(parameter_block, subset_parameterization);
}
- 优化相机内参及畸变系数,pose subset parameterization(pose 信息部分参数优化)和3D landmark,当 只优化位置信息时候,problem需要添加的代码如下(同上面代码,只需修改一行):
//这里姿态又用欧拉角表示
map_poses[indexPose] = {angleAxis[0], angleAxis[1], angleAxis[2], t(0), t(1), t(2)};
double * parameter_block = &map_poses.at(indexPose)[0];
problem.AddParameterBlock(parameter_block, 6);
std::vector<int> vec_constant_extrinsic;
vec_constant_extrinsic.insert(vec_constant_extrinsic.end(), {1,2,3});
if (!vec_constant_extrinsic.empty())
{
ceres::SubsetParameterization *subset_parameterization =
new ceres::SubsetParameterization(6, vec_constant_extrinsic);
problem.SetParameterization(parameter_block, subset_parameterization);
}
- 优化相机内参及畸变系数,pose 是常量不优化 和3D landmark. 代价函数写法如下:
//相机模型
template <typename CameraModel>
class BundleAdjustmentConstantPoseCostFunction {
public:
BundleAdjustmentConstantPoseCostFunction(const Eigen::Vector4d& qvec,
const Eigen::Vector3d& tvec,
const Eigen::Vector2d& point2D)
: qw_(qvec(0)),
qx_(qvec(1)),
qy_(qvec(2)),
qz_(qvec(3)),
tx_(tvec(0)),
ty_(tvec(1)),
tz_(tvec(2)),
observed_x_(point2D(0)),
observed_y_(point2D(1)) {}
static ceres::CostFunction* Create(const Eigen::Vector4d& qvec,
const Eigen::Vector3d& tvec,
const Eigen::Vector2d& point2D) {
return (new ceres::AutoDiffCostFunction<
BundleAdjustmentConstantPoseCostFunction<CameraModel>, 2, 3,
CameraModel::kNumParams>(
new BundleAdjustmentConstantPoseCostFunction(qvec, tvec, point2D)));
}
template <typename T>
bool operator()(const T* const point3D, const T* const camera_params,
T* residuals) const {
const T qvec[4] = {T(qw_), T(qx_), T(qy_), T(qz_)};
// Rotate and translate.
T projection[3];
ceres::UnitQuaternionRotatePoint(qvec, point3D, projection);
projection[0] += T(tx_);
projection[1] += T(ty_);
projection[2] += T(tz_);
// Project to image plane.
projection[0] /= projection[2];
projection[1] /= projection[2];
// Distort and transform to pixel space.
CameraModel::WorldToImage(camera_params, projection[0], projection[1],
&residuals[0], &residuals[1]);
// Re-projection error.
residuals[0] -= T(observed_x_);
residuals[1] -= T(observed_y_);
return true;
}
private:
const double qw_;
const double qx_;
const double qy_;
const double qz_;
const double tx_;
const double ty_;
const double tz_;
const double observed_x_;
const double observed_y_;
};
接下来problem 加入残差块代码如下:
ceres::Problem problem;
ceres::CostFunction* cost_function = nullptr;
ceres::LossFunction * p_LossFunction =
ceres_options_.bUse_loss_function_ ?
new ceres::HuberLoss(Square(4.0))
: nullptr; // 关于为何使用损失函数,因为现实中并不是所有观测过程中的噪声都服从
//gaussian noise的(或者可以说几乎没有),
//遇到有outlier的情况,这些方法非常容易挂掉,
//这时候就得用到robust statistics里面的
//robust cost(*cost也可以叫做loss, 统计学那边喜欢叫risk) function了,
//比较常用的有huber, cauchy等等。
cost_function = BundleAdjustmentConstantPoseCostFunction<CameraModel>::Create( \
image.Qvec(), image.Tvec(), point2D.XY());//观测值输入
//将优化量加入残差块
problem_->AddResidualBlock(cost_function, loss_function, \
point3D.XYZ().data(), camera_params_data);//被优化量加入残差-3D点和相机内参
以上就是四种BA 的case 当然还可以有很多变种,比如gps约束的BA(即是附有限制条件的间接平差),比如 固定3D landmark,优化pose和相机参数和畸变系数
参考资料
- colmap openmvg 源代码,github 地址:https://github.com/openMVG/openMVGhttps://github.com/colmap/colmap
- 单杰. 光束法平差简史与概要. 武汉大学学报·信息科学版, 2018, 43(12): 1797-1810.
备注:作者也是我们「3D视觉从入门到精通」特邀嘉宾:一个超干货的3D视觉学习社区本文仅做学术分享,如有侵权,请联系删文。