SCUT - 354 - CC的简单多项式 - 杜教筛
https://scut.online/p/354
跟多项式一点关系都没有。
注意到其实两个多项式在1处求值,那么就是他们的系数加起来。
列一列发现系数就是n以内两两求gcd的值,还自动把0去掉了。
那么就是
\(\sum\limits_{i=1}^{n}\sum\limits_{i=1}^{n}gcd(i^2,j^2)\)
这种情况就要枚举g但是为了方便我们也是枚举g而不是g平方
\(\sum\limits_{g=1}^{n}g^2\sum\limits_{i=1}^{n}\sum\limits_{i=1}^{n}[gcd(i^2,j^2)==g^2]\)
列一列gcd的分解式发现其实可以把平方约分掉
\(\sum\limits_{g=1}^{n}g^2\sum\limits_{i=1}^{n}\sum\limits_{i=1}^{n}[gcd(i,j)==g]\)
二话不说除以g
\(\sum\limits_{g=1}^{n}g^2\sum\limits_{i=1}^{\lfloor\frac{n}{g}\rfloor}\sum\limits_{i=1}^{\lfloor\frac{n}{g}\rfloor}[gcd(i,j)==1]\)
套上反演
\(\sum\limits_{g=1}^{n}g^2\sum\limits_{i=1}^{\lfloor\frac{n}{g}\rfloor}\sum\limits_{i=1}^{\lfloor\frac{n}{g}\rfloor}\sum\limits_{k|gcd(i,j)}\mu(k)\)
\(\sum\limits_{g=1}^{n}g^2\sum\limits_{k=1}^{n}\mu(k){\lfloor\frac{n}{gk}\rfloor}^{2}\)
枚举T
\(\sum\limits_{T=1}^{n}{\lfloor\frac{n}{T}\rfloor}^{2}\sum\limits_{g|T}g^2\mu(\frac{T}{g})\)
假如搞得出后面那个狄利克雷卷积的前缀和,那么可以分块回答,看看复杂度刚刚够的样子。
后面那个是
\(\sum\limits_{g|T}g^2\mu(\frac{T}{g})\)
也就是
\(id^2*\mu\)
嗷神提示卷一个东西,恒等函数\(I(n)=1\)
\((id^2*\mu)*I\)
结合律
\(id^2*(\mu*I)\)
后面那个就是
\(id^2*(\epsilon)\)
这个东西展开就是
\(\sum\limits_{g|T}g^2[\frac{T}{g}==1]\)
\(T^2\)
也就是说卷积之后的前缀和是\(s_2\),而恒等函数的前缀和就是\(s_0\)
上一波杜教筛就可以了
测试发现unorder_map和cc_hash_table差异非常小。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
inline ll read() {
ll x = 0;
//int f = 0;
char c;
do {
c = getchar();
/*if(c == '-')
f = 1;*/
} while(c < '0' || c > '9');
do {
x = (x << 3) + (x << 1) + c - '0';
c = getchar();
} while(c >= '0' && c <= '9');
//return f ? -x : x;
return x;
}
inline void _write(int x) {
if(x > 9)
_write(x / 10);
putchar(x % 10 + '0');
}
inline void write(int x) {
if(x < 0) {
putchar('-');
x = -x;
}
_write(x);
putchar('\n');
}
/*void TestCase(int ti);
int main() {
#ifdef Yinku
freopen("Yinku.in", "r", stdin);
//freopen("Yinku.out","w",stdout);
#endif // Yinku
int T = 1;
for(int ti = 1; ti <= T; ti++)
TestCase(ti);
}*/
/*--- ---*/
const int mod = 998244353;
const int inv2 = (mod + 1) >> 1;
const int MAXN = 1.5e7;
int pri[MAXN + 1];
int &pritop = pri[0];
int f[MAXN + 1];
int pk[MAXN + 1];
void sieve(int n = MAXN) {
pk[1] = 1;
f[1] = 1;
for(int i = 2; i <= n; i++) {
if(!pri[i]) {
pri[++pritop] = i;
pk[i] = i;
f[i] = (1ll * i * i - 1ll) % mod;
}
for(int j = 1; j <= pritop; j++) {
int &p = pri[j];
int t = i * p;
if(t > n)
break;
pri[t] = 1;
if(i % p) {
pk[t] = p;
f[t] = 1ll * f[i] * f[p] % mod;
} else {
pk[t] = pk[i] * p;
if(pk[t] == t) {
f[t] = 1ll * f[i] * p % mod * p % mod;
} else {
f[t] = 1ll * f[t / pk[t]] * f[pk[t]] % mod;
}
break;
}
}
}
for(int i = 1; i <= n; i++) {
f[i] = f[i - 1] + f[i];
if(f[i] >= mod)
f[i] -= mod;
}
}
/*inline int qpow(ll x, int n) {
ll res = 1;
while(n) {
if(n & 1) {
res *= x;
if(res >= mod)
res %= mod;
}
x *= x;
if(x >= mod)
x %= mod;
n >>= 1;
}
return res;
}*/
const int inv6 = 166374059; //qpow(6, mod - 2);
inline int s2(ll n) {
if(n >= mod)
n %= mod;
ll tmp = n * (n + 1);
if(tmp >= mod)
tmp %= mod;
tmp *= n * 2 + 1 ;
if(tmp >= mod)
tmp %= mod;
tmp *= inv6;
if(tmp >= mod)
tmp %= mod;
return tmp;
}
unordered_map<ll, int> Sf;
inline int F(ll n) {
if(n <= MAXN)
return f[n];
if(Sf.count(n))
return Sf[n];
ll ret = s2(n);
for(ll l = 2, r; l <= n; l = r + 1) {
ll t = n / l;
r = n / t;
ret -= (r - l + 1) % mod * F(t) % mod;
if(ret < 0)
ret += mod;
}
return Sf[n] = ret;
}
inline int S(ll n) {
ll res = 0;
for(ll l = 1, r; l <= n; l = r + 1) {
ll t = n / l;
r = n / t;
ll tmp = F(r) - F(l - 1);
if(tmp < 0)
tmp += mod;
if(t >= mod)
t %= mod;
t *= t;
if(t >= mod)
t %= mod;
tmp *= t;
if(tmp >= mod)
tmp %= mod;
res += tmp;
if(res >= mod)
res -= mod;
}
return res;
}
int main() {
#ifdef Yinku
freopen("Yinku.in", "r", stdin);
//freopen("Yinku.out","w",stdout);
#endif // Yinku
sieve();
int T = read();
while(T--) {
write(S(read()));
}
}
但是好像发现一个问题,别人都是欧拉函数的?
\(\sum\limits_{g=1}^{n}g^2\sum\limits_{i=1}^{\lfloor\frac{n}{g}\rfloor}\sum\limits_{i=1}^{\lfloor\frac{n}{g}\rfloor}[gcd(i,j)==1]\)
这里内部记为
\(S(n)=\sum\limits_{i=1}^{n}\sum\limits_{i=1}^{n}[gcd(i,j)==1]\)
n以内互质对的个数?那么枚举较大的那个,小的那个要和他互质,就是欧拉函数,大小互换多了一倍,其中(1,1)重复去掉一个
\(S(n)=-1+2\sum\limits_{i=1}^{n}\varphi(i)\)
所以原式就是
\(\sum\limits_{g=1}^{n}g^2S(\lfloor\frac{n}{g}\rfloor)\)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
inline ll read() {
ll x = 0;
//int f = 0;
char c;
do {
c = getchar();
/*if(c == '-')
f = 1;*/
} while(c < '0' || c > '9');
do {
x = (x << 3) + (x << 1) + c - '0';
c = getchar();
} while(c >= '0' && c <= '9');
//return f ? -x : x;
return x;
}
inline void _write(int x) {
if(x > 9)
_write(x / 10);
putchar(x % 10 + '0');
}
inline void write(int x) {
if(x < 0) {
putchar('-');
x = -x;
}
_write(x);
putchar('\n');
}
/*void TestCase(int ti);
int main() {
#ifdef Yinku
freopen("Yinku.in", "r", stdin);
//freopen("Yinku.out","w",stdout);
#endif // Yinku
int T = 1;
for(int ti = 1; ti <= T; ti++)
TestCase(ti);
}*/
/*--- ---*/
const int mod = 998244353;
const int inv2 = (mod + 1) >> 1;
const int MAXN = 1.6e7;
int pri[MAXN + 1];
int &pritop = pri[0];
int phi[MAXN + 1];
void sieve(int n = MAXN) {
phi[1] = 1;
for(int i = 2; i <= n; i++) {
if(!pri[i]) {
pri[++pritop] = i;
phi[i] = i - 1;
}
for(int j = 1; j <= pritop; j++) {
int &p = pri[j];
int t = i * p;
if(t > n)
break;
pri[t] = 1;
if(i % p) {
phi[t] = phi[i] * phi[p];
} else {
phi[t] = phi[i] * p;
break;
}
}
}
for(int i = 1; i <= n; i++) {
phi[i] += phi[i - 1];
if(phi[i] >= mod)
phi[i] -= mod;
}
}
/*inline int qpow(ll x, int n) {
ll res = 1;
while(n) {
if(n & 1) {
res *= x;
if(res >= mod)
res %= mod;
}
x *= x;
if(x >= mod)
x %= mod;
n >>= 1;
}
return res;
}*/
inline int s1(ll n) {
if(n >= mod)
n %= mod;
return n * (n + 1) % mod * inv2 % mod;
}
const int inv6 = 166374059; //qpow(6, mod - 2);
inline int s2(ll n) {
if(n >= mod)
n %= mod;
ll tmp = n * (n + 1);
if(tmp >= mod)
tmp %= mod;
tmp *= n * 2 + 1 ;
if(tmp >= mod)
tmp %= mod;
tmp *= inv6;
if(tmp >= mod)
tmp %= mod;
return tmp;
}
unordered_map<ll, int> Sphi;
inline int Phi(ll n) {
if(n <= MAXN)
return phi[n];
if(Sphi.count(n))
return Sphi[n];
int ret = s1(n);
for(ll l = 2, r, t; l <= n; l = r + 1) {
t = n / l;
r = n / t;
ret -= (r - l + 1) % mod * Phi(t) % mod;
if(ret < 0)
ret += mod;
}
return Sphi[n] = ret;
}
inline int S(ll n) {
return (2 * Phi(n) - 1) % mod;
}
inline int Ans(ll n) {
int res = 0;
for(ll l = 1, r, t; l <= n; l = r + 1) {
t = n / l;
r = n / t;
ll tmp = s2(r) - s2(l - 1);
if(tmp < 0)
tmp += mod;
tmp *= S(t);
if(tmp >= mod)
tmp %= mod;
res += tmp;
if(res >= mod)
res -= mod;
}
return res;
}
int main() {
#ifdef Yinku
freopen("Yinku.in", "r", stdin);
//freopen("Yinku.out","w",stdout);
#endif // Yinku
sieve();
int T = read();
while(T--) {
write(Ans(read()));
}
}