洛谷 - P2568 - GCD - 欧拉函数
https://www.luogu.org/problemnew/show/P2568
统计n以内gcd为质数的数的个数。
求 ∑pn∑i=1n∑j=1[gcd(i,j)==p]
一开始还以为要莫比乌斯反演.
推了半天不知道怎么求,遂看题解:
$\sum\limits_p \sum\limits_{i=1}{n}\sum\limits_{j=1} [gcd(i,j)p] =\sum\limits_p \sum\limits_{i=1}{\frac{n}{p}}\sum\limits_{j=1}{p}} [gcd(i,j)1] $
一个有序数对 (i,j),(i>j) 与 i 互质的数 j 的个数也就是 \varphi(i) ,画一个正方形可以知道对调 (i,j) 求出一样的结果.
但是当 $ i1&&j1 $ 时被重复计数了,要减去
那么答案就是 \sum\limits_p (2*\sum\limits_{i=1}^{\frac{n}{p}}\varphi(i) - 1)
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define N 10000005
int phi[N],pri[N],cntpri=0;
bool notpri[N];
ll prefix[N];
void sieve_phi(int n) {
notpri[1]=phi[1]=1;
prefix[0]=0;
prefix[1]=1;
for(int i=2; i<=n; i++) {
if(!notpri[i])
pri[++cntpri]=i,phi[i]=i-1;
for(int j=1; j<=cntpri&&i*pri[j]<=n; j++) {
notpri[i*pri[j]]=1;
if(i%pri[j])
phi[i*pri[j]]=phi[i]*phi[pri[j]];
else {
phi[i*pri[j]]=phi[i]*pri[j];
break;
}
}
prefix[i]=prefix[i-1]+phi[i];
}
}
ll solve(ll n){
ll ans=0;
for(int i=1;i<=cntpri;i++){
if(pri[i]<=n){
ans+=2ll*(prefix[n/pri[i]])-1ll;
}
}
return ans;
}
int main() {
sieve_phi(10000000+1);
int n;
while(cin>>n) {
ll ans=solve(n);
cout<<ans<<endl;
}
}
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 如何打造一个高并发系统?
· .NET Core GC压缩(compact_phase)底层原理浅谈
· 现代计算机视觉入门之:什么是图片特征编码
· .NET 9 new features-C#13新的锁类型和语义
· Linux系统下SQL Server数据库镜像配置全流程详解
· Sdcb Chats 技术博客:数据库 ID 选型的曲折之路 - 从 Guid 到自增 ID,再到
· 语音处理 开源项目 EchoSharp
· 《HelloGitHub》第 106 期
· Huawei LiteOS基于Cortex-M4 GD32F4平台移植
· mysql8.0无备份通过idb文件恢复数据过程、idb文件修复和tablespace id不一致处