洛谷 - P2568 - GCD - 欧拉函数
https://www.luogu.org/problemnew/show/P2568
统计n以内gcd为质数的数的个数。
求 \(\sum\limits_p \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n} [gcd(i,j)==p]\)
一开始还以为要莫比乌斯反演.
推了半天不知道怎么求,遂看题解:
$\sum\limits_p \sum\limits_{i=1}{n}\sum\limits_{j=1} [gcd(i,j)p] =\sum\limits_p \sum\limits_{i=1}{\frac{n}{p}}\sum\limits_{j=1}{p}} [gcd(i,j)1] $
一个有序数对 \((i,j),(i>j)\) 与 \(i\) 互质的数 \(j\) 的个数也就是 \(\varphi(i)\) ,画一个正方形可以知道对调 \((i,j)\) 求出一样的结果.
但是当 $ i1&&j1 $ 时被重复计数了,要减去
那么答案就是 $\sum\limits_p (2*\sum\limits_{i=1}^{\frac{n}{p}}\varphi(i) - 1) $
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define N 10000005
int phi[N],pri[N],cntpri=0;
bool notpri[N];
ll prefix[N];
void sieve_phi(int n) {
notpri[1]=phi[1]=1;
prefix[0]=0;
prefix[1]=1;
for(int i=2; i<=n; i++) {
if(!notpri[i])
pri[++cntpri]=i,phi[i]=i-1;
for(int j=1; j<=cntpri&&i*pri[j]<=n; j++) {
notpri[i*pri[j]]=1;
if(i%pri[j])
phi[i*pri[j]]=phi[i]*phi[pri[j]];
else {
phi[i*pri[j]]=phi[i]*pri[j];
break;
}
}
prefix[i]=prefix[i-1]+phi[i];
}
}
ll solve(ll n){
ll ans=0;
for(int i=1;i<=cntpri;i++){
if(pri[i]<=n){
ans+=2ll*(prefix[n/pri[i]])-1ll;
}
}
return ans;
}
int main() {
sieve_phi(10000000+1);
int n;
while(cin>>n) {
ll ans=solve(n);
cout<<ans<<endl;
}
}