洛谷 - P1390 - 公约数的和 - 莫比乌斯反演 - 欧拉函数
https://www.luogu.org/problemnew/show/P1390
求 $\sum\limits_{i=1}{n}\sum\limits_{j=1} gcd(i,j) $
不会,看题解:
类似求gcd为p的求法:
$ f(n) = \sum\limits_{i=1}{n}\sum\limits_{j=1} gcd(i,j) =\sum\limits_{i=1}^{N} d \sum\limits_{i=1}{n}\sum\limits_{j=1} [gcd(i,j)==d] $
提出 d :
f(n)=N∑i=1d⌊nd⌋∑i=1⌊md⌋∑j=1[gcd(i,j)==1]
用 ∑d|nμ(d)=[n==1] 替换,反演:
f(n)=N∑i=1dN∑k=1μ(k)⌊nkd⌋⌊mkd⌋
记 T=kd :
f(n)=N∑T=1∑d|Tdμ(Td)⌊nT⌋⌊mT⌋
提出 T
f(n)=N∑T=1⌊nT⌋⌊mT⌋∑d|Tdμ(Td)
因为:
∑d|nμ(d)d=φ(n)n
f(n)=N∑T=1⌊nT⌋⌊mT⌋φ(T)
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define N 2000005
int phi[N],pri[N],cntpri=0;
bool notpri[N];
void sieve_phi(int n)
{
notpri[1]=phi[1]=1;
for (int i=2;i<=n;i++)
{
if (!notpri[i]) pri[++cntpri]=i,phi[i]=i-1;
for (int j=1;j<=cntpri&&i*pri[j]<=n;j++)
{
notpri[i*pri[j]]=1;
if (i%pri[j]) phi[i*pri[j]]=phi[i]*phi[pri[j]];
else {phi[i*pri[j]]=phi[i]*pri[j];break;}
}
}
}
int main(){
int n;
cin>>n;
sieve_phi(n);
ll ans=0;
for(int i=1;i<=n;i++){
ans+=1ll*phi[i]*(n/i)*(n/i);
}
cout<<(ans-(1ll*(1+n)*n)/2)/2<<endl;
}
另一种奇怪的做法:
$ f(n) = \sum\limits_{d=1}^{n} d \sum\limits_{i=1}{n}\sum\limits_{j=1} [gcd(i,j)==d] $
提d:
$ \sum\limits_{d=1}^{n} d \sum\limits_{i=1}{\frac{n}{d}}\sum\limits_{j=1} [gcd(i,j)==1] $
后面是欧拉函数的定义:
n∑d=1dnd∑i=2φ(i)
这里有个bug是因为1和1互质但是1和1相同,所以要去掉 φ(1)
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define N 2000000+5
int phi[N],pri[N],cntpri=0;
bool notpri[N];
ll prefix[N];
void sieve_phi(int n) {
notpri[1]=phi[1]=1;
prefix[0]=0;
prefix[1]=1;
for(int i=2; i<=n; i++) {
if(!notpri[i])
pri[++cntpri]=i,phi[i]=i-1;
for(int j=1; j<=cntpri&&i*pri[j]<=n; j++) {
notpri[i*pri[j]]=1;
if(i%pri[j])
phi[i*pri[j]]=phi[i]*phi[pri[j]];
else {
phi[i*pri[j]]=phi[i]*pri[j];
break;
}
}
prefix[i]=prefix[i-1]+phi[i];
}
}
ll solve(ll n){
ll ans=0;
for(int d=1;d<=n;d++){
ans+=d*((prefix[n/d])-1);
}
return ans;
}
int main() {
sieve_phi(2000000+1);
int n;
while(cin>>n) {
ll ans=solve(n);
cout<<ans<<endl;
}
}
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步