linear jump Markov models
只有当雅可比矩阵存在时,才能应用线性化。但是,情况并非总是如此。一些系统包含不连续性(例如,过程模型可能是跳跃线性的[14],其中参数可以突然变化[1],或者传感器可能返回高度量化的传感器测量值[15]),其他系统具有奇点(例如,透视投影方程[16]),而在其他系统中,状态本身本质上是离散的(例如,用于预测驾驶飞机规避行为的基于规则的系统[17])。
Linearization can be applied only if the Jacobian matrix exists. However, this
is not always the case. Some systems contain discontinuities (for example, the
process model might be jump-linear [14], in which the parameters can change
abruptly, or the sensor might return highly quantized sensor measurements
[15]), others have singularities (for example, perspective projection equations
[16]), and in others the states themselves are inherently discrete (e.g., a
rule-based system for predicting the evasive behavior of a piloted aircraft
[17]).
[1]. Julier, S.J. and J.K. Uhlmann. Unscented filtering and nonlinear estimation. in Sequential State Estimation: From Kalman Filters to Particles Filters. 2004. Institute of Electrical and Electronics Engineers Inc.
感谢 https://www.cnblogs.com/sunny99/ sumoier对本文的帮助!
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· Manus爆火,是硬核还是营销?
· 终于写完轮子一部分:tcp代理 了,记录一下
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 别再用vector<bool>了!Google高级工程师:这可能是STL最大的设计失误
· 单元测试从入门到精通