摘要: //2019.08.03晚#k-近邻算法的拓展思考与总结1、k-近邻算法是一种非常典型的分类监督学习算法,它可以解决多分类的问题;另外,它的整体思想简单,效果强大。它也可以用来解决回归问题,使用的库函数为KNeighborsRegressor 2、k-近邻算法虽然可以很好地解决多分类问题,但是它也有 阅读全文
posted @ 2019-08-03 20:02 The-Chosen-One 阅读(4191) 评论(0) 推荐(0) 编辑
摘要: //2019.08.03下午#机器学习算法的数据归一化(feature scaling)1、数据归一化的必要性:对于机器学习算法的基础训练数据,由于数据类型的不同,其单位及其量纲也是不一样的,而也正是因为如此,有时它会使得训练集中每个样本的不同列数据大小差异较大,即数量级相差比较大,这会导致在机器学 阅读全文
posted @ 2019-08-03 19:59 The-Chosen-One 阅读(1712) 评论(1) 推荐(0) 编辑
摘要: 1、机器学习算法的整体使用步骤如下: (1)从scikitlearn库中调用相应的机器学习算法模块;(2)输入相应的算法参数定义一个新的算法;(3)输入基础训练数据集利用scaler对其进行数据归一化处理 (4)对于归一化的数据集进行机器学习算法的训练fit过程;(5)输入测试数据集对其结果进行预测 阅读全文
posted @ 2019-08-03 19:31 The-Chosen-One 阅读(2980) 评论(0) 推荐(0) 编辑
摘要: 机器学习算法参数的网格搜索实现: //2019.08.031、scikitlearn库中调用网格搜索的方法为:Grid search,它的搜索方式比较统一简单,其对于算法批判的标准比较复杂,是一种复合交叉批判方式,不仅仅是准确率。其具体的实现方式如下(以KNN算法的三大常用超参数为例):#使用sci 阅读全文
posted @ 2019-08-03 14:57 The-Chosen-One 阅读(3796) 评论(0) 推荐(0) 编辑
摘要: //2019.08.02下午#机器学习算法中的超参数与模型参数1、超参数:是指机器学习算法运行之前需要指定的参数,是指对于不同机器学习算法属性的决定参数。通常来说,人们所说的调参就是指调节超参数。2、模型参数:是指算法在使用过程中需要学习得到的参数,即输入与输出之间映射函数中的参数,它需要通过对于训 阅读全文
posted @ 2019-08-03 13:55 The-Chosen-One 阅读(831) 评论(0) 推荐(0) 编辑
摘要: 1、k近邻算法可以说是唯一一个没有训练过程的机器学习算法,它含有训练基础数据集,但是是一种没有模型的算法,为了将其和其他算法进行统一,我们把它的训练数据集当做它的模型本身。2、在scikitlearn中调用KNN算法的操作步骤如下(利用实际例子举例如下):#1导入相应的数据可视化模块import n 阅读全文
posted @ 2019-08-03 13:41 The-Chosen-One 阅读(787) 评论(0) 推荐(0) 编辑