XGboost数据比赛实战

XGboost数据比赛实战之调参篇(完整流程)

首先,很幸运的是,Scikit-learn中提供了一个函数可以帮助我们更好地进行调参:

sklearn.model_selection.GridSearchCV

常用参数解读:

estimator:所使用的分类器,如果比赛中使用的是XGBoost的话,就是生成的model。比如: model = xgb.XGBRegressor(**other_params)
param_grid:值为字典或者列表,即需要最优化的参数的取值。比如:cv_params = {‘n_estimators’: [550, 575, 600, 650, 675]}
scoring :准确度评价标准,默认None,这时需要使用score函数;或者如scoring=’roc_auc’,根据所选模型不同,评价准则不同。字符串(函数名),或是可调用对象,需要其函数签名形如:scorer(estimator, X, y);如果是None,则使用estimator的误差估计函数。scoring参数选择如下:


具体参考地址:http://scikit-learn.org/stable/modules/model_evaluation.html

这次实战我使用的是r2这个得分函数,当然大家也可以根据自己的实际需要来选择。

调参刚开始的时候,一般要先初始化一些值:

learning_rate: 0.1
n_estimators: 500
max_depth: 5
min_child_weight: 1
subsample: 0.8
colsample_bytree:0.8
gamma: 0
reg_alpha: 0
reg_lambda: 1
链接:XGBoost常用参数一览表

你可以按照自己的实际情况来设置初始值,上面的也只是一些经验之谈吧。

调参的时候一般按照以下顺序来进行:

1、最佳迭代次数:n_estimators

if __name__ == '__main__':
trainFilePath = 'dataset/soccer/train.csv'
testFilePath = 'dataset/soccer/test.csv'
data = pd.read_csv(trainFilePath)
X_train, y_train = featureSet(data)
X_test = loadTestData(testFilePath)

cv_params = {'n_estimators': [400, 500, 600, 700, 800]}
other_params = {'learning_rate': 0.1, 'n_estimators': 500, 'max_depth': 5, 'min_child_weight': 1, 'seed': 0,
'subsample': 0.8, 'colsample_bytree': 0.8, 'gamma': 0, 'reg_alpha': 0, 'reg_lambda': 1}

model = xgb.XGBRegressor(**other_params)
optimized_GBM = GridSearchCV(estimator=model, param_grid=cv_params, scoring='r2', cv=5, verbose=1, n_jobs=4)
optimized_GBM.fit(X_train, y_train)
evalute_result = optimized_GBM.grid_scores_
print('每轮迭代运行结果:{0}'.format(evalute_result))
print('参数的最佳取值:{0}'.format(optimized_GBM.best_params_))
print('最佳模型得分:{0}'.format(optimized_GBM.best_score_))

 

 

写到这里,需要提醒大家,在代码中有一处很关键:

model = xgb.XGBRegressor(**other_params)中两个*号千万不能省略!可能很多人不注意,再加上网上很多教程估计是从别人那里直接拷贝,没有运行结果,所以直接就用了model = xgb.XGBRegressor(other_params)。悲剧的是,如果直接这样运行的话,会报如下错误:

xgboost.core.XGBoostError: b"Invalid Parameter format for max_depth expect int but value...
1
不信,请看链接:xgboost issue

以上是血的教训啊,自己不运行一遍代码,永远不知道会出现什么Bug!

运行后的结果为:

[Parallel(n_jobs=4)]: Done 25 out of 25 | elapsed: 1.5min finished
每轮迭代运行结果:[mean: 0.94051, std: 0.01244, params: {'n_estimators': 400}, mean: 0.94057, std: 0.01244, params: {'n_estimators': 500}, mean: 0.94061, std: 0.01230, params: {'n_estimators': 600}, mean: 0.94060, std: 0.01223, params: {'n_estimators': 700}, mean: 0.94058, std: 0.01231, params: {'n_estimators': 800}]
参数的最佳取值:{'n_estimators': 600}
最佳模型得分:0.9406056804545407

由输出结果可知最佳迭代次数为600次。但是,我们还不能认为这是最终的结果,由于设置的间隔太大,所以,我又测试了一组参数,这次粒度小一些:

cv_params = {'n_estimators': [550, 575, 600, 650, 675]}
other_params = {'learning_rate': 0.1, 'n_estimators': 600, 'max_depth': 5, 'min_child_weight': 1, 'seed': 0,
'subsample': 0.8, 'colsample_bytree': 0.8, 'gamma': 0, 'reg_alpha': 0, 'reg_lambda': 1}

运行后的结果为:

[Parallel(n_jobs=4)]: Done 25 out of 25 | elapsed: 1.5min finished
每轮迭代运行结果:[mean: 0.94065, std: 0.01237, params: {'n_estimators': 550}, mean: 0.94064, std: 0.01234, params: {'n_estimators': 575}, mean: 0.94061, std: 0.01230, params: {'n_estimators': 600}, mean: 0.94060, std: 0.01226, params: {'n_estimators': 650}, mean: 0.94060, std: 0.01224, params: {'n_estimators': 675}]
参数的最佳取值:{'n_estimators': 550}
最佳模型得分:0.9406545392685364

果不其然,最佳迭代次数变成了550。有人可能会问,那还要不要继续缩小粒度测试下去呢?这个我觉得可以看个人情况,如果你想要更高的精度,当然是粒度越小,结果越准确,大家可以自己慢慢去调试,我在这里就不一一去做了。

2、接下来要调试的参数是min_child_weight以及max_depth:

注意:每次调完一个参数,要把 other_params对应的参数更新为最优值。

cv_params = {'max_depth': [3, 4, 5, 6, 7, 8, 9, 10], 'min_child_weight': [1, 2, 3, 4, 5, 6]}
other_params = {'learning_rate': 0.1, 'n_estimators': 550, 'max_depth': 5, 'min_child_weight': 1, 'seed': 0,
'subsample': 0.8, 'colsample_bytree': 0.8, 'gamma': 0, 'reg_alpha': 0, 'reg_lambda': 1}

运行后的结果为:

[Parallel(n_jobs=4)]: Done 42 tasks | elapsed: 1.7min
[Parallel(n_jobs=4)]: Done 192 tasks | elapsed: 12.3min
[Parallel(n_jobs=4)]: Done 240 out of 240 | elapsed: 17.2min finished
每轮迭代运行结果:[mean: 0.93967, std: 0.01334, params: {'min_child_weight': 1, 'max_depth': 3}, mean: 0.93826, std: 0.01202, params: {'min_child_weight': 2, 'max_depth': 3}, mean: 0.93739, std: 0.01265, params: {'min_child_weight': 3, 'max_depth': 3}, mean: 0.93827, std: 0.01285, params: {'min_child_weight': 4, 'max_depth': 3}, mean: 0.93680, std: 0.01219, params: {'min_child_weight': 5, 'max_depth': 3}, mean: 0.93640, std: 0.01231, params: {'min_child_weight': 6, 'max_depth': 3}, mean: 0.94277, std: 0.01395, params: {'min_child_weight': 1, 'max_depth': 4}, mean: 0.94261, std: 0.01173, params: {'min_child_weight': 2, 'max_depth': 4}, mean: 0.94276, std: 0.01329...]
参数的最佳取值:{'min_child_weight': 5, 'max_depth': 4}
最佳模型得分:0.94369522247392

由输出结果可知参数的最佳取值:{'min_child_weight': 5, 'max_depth': 4}。(代码输出结果被我省略了一部分,因为结果太长了,以下也是如此)

3、接着我们就开始调试参数:gamma:

cv_params = {'gamma': [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]}
other_params = {'learning_rate': 0.1, 'n_estimators': 550, 'max_depth': 4, 'min_child_weight': 5, 'seed': 0,
'subsample': 0.8, 'colsample_bytree': 0.8, 'gamma': 0, 'reg_alpha': 0, 'reg_lambda': 1}

运行后的结果为:

[Parallel(n_jobs=4)]: Done 30 out of 30 | elapsed: 1.5min finished
每轮迭代运行结果:[mean: 0.94370, std: 0.01010, params: {'gamma': 0.1}, mean: 0.94370, std: 0.01010, params: {'gamma': 0.2}, mean: 0.94370, std: 0.01010, params: {'gamma': 0.3}, mean: 0.94370, std: 0.01010, params: {'gamma': 0.4}, mean: 0.94370, std: 0.01010, params: {'gamma': 0.5}, mean: 0.94370, std: 0.01010, params: {'gamma': 0.6}]
参数的最佳取值:{'gamma': 0.1}
最佳模型得分:0.94369522247392

由输出结果可知参数的最佳取值:{'gamma': 0.1}。

4、接着是subsample以及colsample_bytree:

cv_params = {'subsample': [0.6, 0.7, 0.8, 0.9], 'colsample_bytree': [0.6, 0.7, 0.8, 0.9]}
other_params = {'learning_rate': 0.1, 'n_estimators': 550, 'max_depth': 4, 'min_child_weight': 5, 'seed': 0,
'subsample': 0.8, 'colsample_bytree': 0.8, 'gamma': 0.1, 'reg_alpha': 0, 'reg_lambda': 1}

运行后的结果显示参数的最佳取值:{'subsample': 0.7,'colsample_bytree': 0.7}

5、紧接着就是:reg_alpha以及reg_lambda:

cv_params = {'reg_alpha': [0.05, 0.1, 1, 2, 3], 'reg_lambda': [0.05, 0.1, 1, 2, 3]}
other_params = {'learning_rate': 0.1, 'n_estimators': 550, 'max_depth': 4, 'min_child_weight': 5, 'seed': 0,
'subsample': 0.7, 'colsample_bytree': 0.7, 'gamma': 0.1, 'reg_alpha': 0, 'reg_lambda': 1}

运行后的结果为:

[Parallel(n_jobs=4)]: Done 42 tasks | elapsed: 2.0min
[Parallel(n_jobs=4)]: Done 125 out of 125 | elapsed: 5.6min finished
每轮迭代运行结果:[mean: 0.94169, std: 0.00997, params: {'reg_alpha': 0.01, 'reg_lambda': 0.01}, mean: 0.94112, std: 0.01086, params: {'reg_alpha': 0.01, 'reg_lambda': 0.05}, mean: 0.94153, std: 0.01093, params: {'reg_alpha': 0.01, 'reg_lambda': 0.1}, mean: 0.94400, std: 0.01090, params: {'reg_alpha': 0.01, 'reg_lambda': 1}, mean: 0.93820, std: 0.01177, params: {'reg_alpha': 0.01, 'reg_lambda': 100}, mean: 0.94194, std: 0.00936, params: {'reg_alpha': 0.05, 'reg_lambda': 0.01}, mean: 0.94136, std: 0.01122, params: {'reg_alpha': 0.05, 'reg_lambda': 0.05}, mean: 0.94164, std: 0.01120...]
参数的最佳取值:{'reg_alpha': 1, 'reg_lambda': 1}
最佳模型得分:0.9441561344357595

由输出结果可知参数的最佳取值:{'reg_alpha': 1, 'reg_lambda': 1}。

6、最后就是learning_rate,一般这时候要调小学习率来测试:

cv_params = {'learning_rate': [0.01, 0.05, 0.07, 0.1, 0.2]}
other_params = {'learning_rate': 0.1, 'n_estimators': 550, 'max_depth': 4, 'min_child_weight': 5, 'seed': 0,
'subsample': 0.7, 'colsample_bytree': 0.7, 'gamma': 0.1, 'reg_alpha': 1, 'reg_lambda': 1}

运行后的结果为:

[Parallel(n_jobs=4)]: Done 25 out of 25 | elapsed: 1.1min finished
每轮迭代运行结果:[mean: 0.93675, std: 0.01080, params: {'learning_rate': 0.01}, mean: 0.94229, std: 0.01138, params: {'learning_rate': 0.05}, mean: 0.94110, std: 0.01066, params: {'learning_rate': 0.07}, mean: 0.94416, std: 0.01037, params: {'learning_rate': 0.1}, mean: 0.93985, std: 0.01109, params: {'learning_rate': 0.2}]
参数的最佳取值:{'learning_rate': 0.1}
最佳模型得分:0.9441561344357595

由输出结果可知参数的最佳取值:{'learning_rate': 0.1}。

我们可以很清楚地看到,随着参数的调优,最佳模型得分是不断提高的,这也从另一方面验证了调优确实是起到了一定的作用。不过,我们也可以注意到,其实最佳分数并没有提升太多。提醒一点,这个分数是根据前面设置的得分函数算出来的,即:

optimized_GBM = GridSearchCV(estimator=model, param_grid=cv_params, scoring='r2', cv=5, verbose=1, n_jobs=4)
1
中的scoring='r2'。在实际情境中,我们可能需要利用各种不同的得分函数来评判模型的好坏。

最后,我们把得到的最佳参数组合扔到模型里训练,就可以得到预测的结果了:

def trainandTest(X_train, y_train, X_test):
# XGBoost训练过程,下面的参数就是刚才调试出来的最佳参数组合
model = xgb.XGBRegressor(learning_rate=0.1, n_estimators=550, max_depth=4, min_child_weight=5, seed=0,
subsample=0.7, colsample_bytree=0.7, gamma=0.1, reg_alpha=1, reg_lambda=1)
model.fit(X_train, y_train)

# 对测试集进行预测
ans = model.predict(X_test)

ans_len = len(ans)
id_list = np.arange(10441, 17441)
data_arr = []
for row in range(0, ans_len):
data_arr.append([int(id_list[row]), ans[row]])
np_data = np.array(data_arr)

# 写入文件
pd_data = pd.DataFrame(np_data, columns=['id', 'y'])
# print(pd_data)
pd_data.to_csv('submit.csv', index=None)

# 显示重要特征
# plot_importance(model)
# plt.show()

好了,调参的过程到这里就基本结束了。其实调参对于模型准确率的提高有一定的帮助,但这是有限的。

最重要的还是要通过数据清洗,特征选择,特征融合,模型融合等手段来进行改进!

posted @ 2020-05-27 18:51  The-Chosen-One  阅读(687)  评论(0编辑  收藏  举报