PCA算法提取人脸识别特征脸(降噪)

PCA算法可以使得高维数据(mxn)降到低维,而在整个降维的过程中会丢失一定的信息,也会因此而实现降噪除噪的效果,另外,它通过降维可以计算出原本数据集的主成分分量Wk矩阵(kxn),如果将其作为数据样本,则可以将其作为原来数据集特征的主特征分量,如果用在人脸识别领域则可以作为人脸数据集的特征脸
具体实现降噪效果和人脸特征脸的代码如下所示:

#1-1利用手写字体数据集MNIST对PCA算法进行使用和效果对比,体现PCA算法的降噪功能
from sklearn import datasets
digits=datasets.load_digits()
x=digits.data
y=digits.target
noisy_digits=x+np.random.normal(0,2,size=x.shape)
ex=noisy_digits[y==0,][:10]
for num in range(1,10):
x_num=noisy_digits[y==num,:][:10]
ex=np.vstack([ex,x_num])
print(ex.shape)
#定义绘图10x10的图像函数,可以看出PCA算法的降噪效果
def plot_digits(data):
fig,axes=plt.subplots(10,10,figsize=(10,10),subplot_kw={"xticks":[],"yticks":[]},
gridspec_kw=dict(hspace=0.1,wspace=0.1))
for i ,ax in enumerate(axes.flat):
ax.imshow(data[i].reshape(8,8),
cmap="binary",interpolation="nearest",
clim=(0,16))
plt.show()
plot_digits(ex)
pca=PCA(0.8)
pca.fit(noisy_digits)
a=pca.transform(ex)
b=pca.inverse_transform(a)
plot_digits(b)

#1-2PCA算法在人脸识别与特征脸的应用
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_lfw_people
faces=fetch_lfw_people()
print(faces.keys())
print(faces.data.shape)
def plot_faces(face):
fig,axes=plt.subplots(6,6,figsize=(10,10),subplot_kw={"xticks":[],"yticks":[]},
gridspec_kw=dict(hspace=0.1,wspace=0.1))
for i ,ax in enumerate(axes.flat):
ax.imshow(face[i].reshape(62,47),cmap="bone")
plt.show()
random_indexes=np.random.permutation(len(faces.data))
x=faces.data[random_indexes]
face1=x[:36,:]
plot_faces(face1)
from sklearn.decomposition import PCA
pca4=PCA(svd_solver="randomized") #利用随机方式进行降维,提高计算的效率
pca4.fit(x)
print(pca4.components_.shape) #输出人脸数据集的主要成分的数据集形状组成(mxn),m代表的是降低到的维度,n是指数据的总体原维度
print(plot_faces(pca4.components_[:36,:]))
face3=fetch_lfw_people(min_faces_per_person=60) #输出训练图片最少有60个的人脸数据样本
print(face3.data.shape)
print(len(face3.target_names))
运行结果如下所示:

 

 


posted @ 2019-08-09 14:26  The-Chosen-One  阅读(4440)  评论(0编辑  收藏  举报