最小二乘法的数学原理(机器学习线性回归)
最小二乘法的数学原理推导(机器学习线性回归)
——燕江依/2019.08.04
对于简单线性回归问题,即数据特征只有一个的基础数据集,要使得损失函数(这里是指真值与预测值之间误差的平方)最小,从而求得最优化的参数a和b,这个具体方法称为最小二乘法,利用最小二乘法,可以得到最佳的参数a和b的计算式,如下所示:
而对于以上的数学原理,最优化与凸优化原理均起着非常关键的作用,下面推导最小二乘法中的a、b参数,其具体数学推导过程如下:
第一步:首先对b进行求导:
第二步:继续对a进行求导:
最终求得最小二乘法中的a和b的具体计算公式如下所示: