BZOJ3944: Sum

BZOJ3944: Sum

Description

Input

一共T+1行
第1行为数据组数T(T<=10)
第2~T+1行每行一个非负整数N,代表一组询问

Output

一共T行,每行两个用空格分隔的数ans1,ans2

Sample Input

6
1
2
8
13
30
2333

Sample Output

1 1
2 0
22 -2
58 -3
278 -3
1655470 2

题解Here!
这个应该算是杜教筛的模板题了。
虽然我并不知道杜教是谁。。。
放上几篇博客吧,这里懒得写了。。。
实在不行就直接背板子嘛。。。
附代码:
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<map>
#define MAXN 1700010
using namespace std;
map<int,long long> sum;
int k=0,prime[MAXN],mu[MAXN];
bool np[MAXN];
inline long long read(){
	long long date=0,w=1;char c=0;
	while(c<'0'||c>'9'){if(c=='-')w=-1;c=getchar();}
	while(c>='0'&&c<='9'){date=date*10+c-'0';c=getchar();}
	return date*w;
}
void make(){
	int m=MAXN-10;
	mu[1]=1;
	for(int i=2;i<=m;i++){
		if(!np[i]){
			prime[++k]=i;
			mu[i]=-1;
		}
		for(int j=1;j<=k&&prime[j]*i<=m;j++){
			np[prime[j]*i]=true;
			if(i%prime[j]==0)break;
			mu[prime[j]*i]=-mu[i];
		}
	}
	for(int i=2;i<=m;i++)mu[i]+=mu[i-1];
}
long long solve_mu(long long n){
	if(n<=MAXN-10)return mu[n];
	if(sum.count(n))return sum[n];
	long long ans=1;
	for(long long i=2,last;i<=n;i=last+1){
		last=n/(n/i);
		ans-=1LL*(last-i+1)*solve_mu(n/i);
	}
	sum[n]=ans;
	return ans;
}
long long solve_phi(long long n){
	long long ans=0;
	for(long long i=1,last;i<=n;i=last+1){
		last=n/(n/i);
		ans+=1LL*(n/i)*(n/i)*(solve_mu(last)-solve_mu(i-1));
	}
	return ((ans-1>>1)+1);
}
int main(){
	make();
	int t=read();
	while(t--){
		long long n=read();
		printf("%lld %lld\n",solve_phi(n),solve_mu(n));
	}
    return 0;
}

 

posted @ 2018-09-03 22:31  符拉迪沃斯托克  阅读(226)  评论(0编辑  收藏  举报
Live2D