BZOJ4423: [AMPPZ2013]Bytehattan

BZOJ4423: [AMPPZ2013]Bytehattan

Description

比特哈顿镇有n*n个格点,形成了一个网格图。一开始整张图是完整的。
有k次操作,每次会删掉图中的一条边(u,v),你需要回答在删除这条边之后u和v是否仍然连通。

Input

第一行包含两个正整数n,k(2<=n<=1500,1<=k<=2n(n-1)),表示网格图的大小以及操作的个数。
接下来k行,每行包含两条信息,每条信息包含两个正整数a,b(1<=a,b<=n)以及一个字符c(c=N或者E)。
如果c=N,表示删除(a,b)到(a,b+1)这条边;如果c=E,表示删除(a,b)到(a+1,b)这条边。
数据进行了加密,对于每个操作,如果上一个询问回答为TAK或者这是第一个操作,那么只考虑第一条信息,否则只考虑第二条信息。
数据保证每条边最多被删除一次。

Output

输出k行,对于每个询问,如果仍然连通,输出TAK,否则输出NIE。

Sample Input

3 4
2 1 E 1 2 N
2 1 N 1 1 N
3 1 N 2 1 N
2 2 N 1 1 N

Sample Output

TAK
TAK
NIE
NIE

题解Here!
这是本蒟蒻见过的强制在线最厉害题。。。
差点死于强制在线的处理方式。。。
由于删边不好维护。
所以将平面图转化为对偶图。
这样在平面图上删边相当于在对偶图上加边,在平面图上是否联通转化为在对偶图上是否不连通。
这个就类似于平面图的最大流转化为对偶图的最短路。
然后用并查集维护一下就好。
我的强制在线比较骚。。。
附代码:
#include<iostream>
#include<algorithm>
#include<cstdio>
#define MAXN 2010
using namespace std;
int n,m,q,size;
int fa[MAXN*MAXN];
inline int read(){
	int date=0,w=1;char c=0;
	while(c<'0'||c>'9'){if(c=='-')w=-1;c=getchar();}
	while(c>='0'&&c<='9'){date=date*10+c-'0';c=getchar();}
	return date*w;
}
int find(int x){return fa[x]==x?x:fa[x]=find(fa[x]);}
int solve(int x,int y,int f){
	int u,v;
	if(f==1){
		if(x==1){u=y;v=size;}
		else if(x==n){u=(m-1)*m+y;v=size;}
		else{u=(x-2)*m+y;v=(x-1)*m+y;}
	}
	else{
		if(y==1){u=(x-1)*m+1;v=size;}
		else if(y==n){u=x*m;v=size;}
		else{u=(x-1)*m+y-1;v=(x-1)*m+y;}
	}
	u=find(u);v=find(v);
	if(u==v)return 0;
	fa[u]=v;
	return 1;
}
void work(){
	char ch[2];
	int x,y,last=1;
	while(q--){
		x=read();y=read();scanf("%s",ch);
		if(!last){x=read();y=read();scanf("%s",ch);}
		int s=solve(x,y,(ch[0]=='N'?1:2));
		if(last){x=read();y=read();scanf("%s",ch);}
		last=s;
		if(s)printf("TAK\n");
		else printf("NIE\n");
	}
}
void init(){
	n=read();q=read();
	m=n-1;
	size=m*m+1;
	for(int i=1;i<=size;i++)fa[i]=i;
}
int main(){
	init();
	work();
    return 0;
}

 

posted @ 2018-08-30 00:05  符拉迪沃斯托克  阅读(260)  评论(0编辑  收藏  举报
Live2D