BZOJ3260: 跳

BZOJ3260: 跳

Description

邪教喜欢在各种各样空间内跳。现在,邪教来到了一个二维平面。
在这个平面内,如果邪教当前跳到了(x,y),那么他下一步可以选择跳到以下4个点:
(x-1,y),(x+1,y),(x,y-1),(x,y+1)。
而每当邪教到达一个点,他需要耗费一些体力,
假设到达(x,y)需要耗费的体力用C(x,y)表示。
对于C(x,y),有以下几个性质:
1、若x=0或者y=0,则C(x,y)=1。
2、若x>0且y>0,则C(x,y)=C(x,y-1)+C(x-1,y)。
3、若x<0且y<0,则C(x,y)=无穷大。
现在,邪教想知道从(0,0)出发到(N,M),最少花费多少体力
到达(0,0)点花费的体力也需要被算入)。
由于答案可能很大,只需要输出答案对10^9+7取模的结果。

Input

读入两个整数 N ,M,表示邪教想到达的点。  
0<=N, M<=10^12   ,N*M<=10^12

Output

输出仅一个整数,表示邪教需要花费的最小体力对 10^9+7取模的结果。

Sample Input

1 2

Sample Output

6

题解Here!
看来本蒟蒻不适合数论555。。。
还是数据结构好。。。
我想了半天,硬是没有想到组合数,感觉像卡特兰数的变形。。。
但是那个$C$有感觉不大对劲。。。
这是个神$flag$。。。
翻了翻题解,组合数?$WTF$?逗我笑?
$3min$后$1A$。。。
神$TM$这真的是组合数啊。。。
我好像就求了个逆元和快速幂啊。。。
附代码:
#include<iostream>
#include<algorithm>
#include<cstdio>
#define MOD 1000000007LL
using namespace std;
long long n,m;
inline long long read(){
	long long date=0,w=1;char c=0;
	while(c<'0'||c>'9'){if(c=='-')w=-1;c=getchar();}
	while(c>='0'&&c<='9'){date=date*10+c-'0';c=getchar();}
	return date*w;
}
long long mexp(long long a,long long b,long long c){
	long long s=1;
	while(b){
		if(b&1)s=s*a%c;
		a=a*a%c;
		b>>=1;
	}
	return s;
}
long long solve(){
	long long ans,x=1;
	if(n>m)swap(n,m);
	m%=MOD;
	ans=m+1;
	for(int i=1;i<=n;i++){
		x=x*(m+i)%MOD*mexp(i,MOD-2,MOD)%MOD;
		ans=(ans+x)%MOD;
	}
	return ans;
}
int main(){
	n=read();m=read();
	printf("%lld\n",solve());
    return 0;
}

 

posted @ 2018-08-20 00:03  符拉迪沃斯托克  阅读(171)  评论(0编辑  收藏  举报
Live2D