时间复杂度和空间复杂度

五、时间复杂度和空间复杂度

🟧 5.1、时间复杂度

在数据结构中,使用时间复杂度来衡量程序运行时间的多少。每条语句执行的次数称为该语句的频度,整段代码的总执行次数则称为整段代码的频度。

定义:在算法估算时,语句的执行次数T(n)是关于问题规模n的函数,从而分析T(n)随着n的变化的关系。算法的时间复杂度也称为算法的时间量度,记作T(n) = O(f(n)),它表示随着问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐进时间复杂度,简称为时间复杂度,其中f(n)是问题规模n的某个函数。

刚开始看上面的定义多少有些迷惑,但是多读几次结合上文的知识串起来后,你会其实并没有这么复杂,时间复杂度其实可以理解为随着问题规模n的增大,程序语句执行频度的增长率。

在定义中我们使用到O()的方式来体现算法时间复杂度的记法,这种方式又称为大O记法。一般情况下,随着问题规模n的增大,T(n)即语句执行次数增长最慢的算法为最优算法,讲简单点,就是无论你输入规模如何变化,只要执行的语句次数增长最小,那这种算法就是最优的。

了解算法时间复杂度的定义,那么如何分析一个算法的时间复杂度呢(即如何推到大O阶呢)?没错,经过前辈们的经验,这个也是有相应的推导公式的,在推导的时候我们应该采用无限大的思想来简化大O表达式,具体如下:

  • 用常数1代替运行时间中的所有加法的常数,如:某个算法的执行函数为f(n) = 10,则替换成大O阶方法的话则为:O(1),无论这个常数为10,还是100,还是1000都使用1替换,因为执行函数和问题规模n的大小无关,它是执行时间恒定的,像时间复杂度为O(1)的又被称作常数阶。
  • 如果表达式有多项含有无限大变量的式子,只保留一个拥有指数最高的变量的式子。例如 2n²+2n 简化为 2n²;
  • 如果最高阶项存在且系数不为1,则去除掉与这个项相乘的系数,例如 2n² 系数为 2,直接简化为 n² ;

经过上面三个步骤推到出来的结果就是算法对应的大O阶。

对算法的时间量度,存在两种方式。 一种是计算所有情况的平均值,这种时间复杂度的计算方法称为平均时间复杂度。另一种情况则为计算最坏情况下的时间复杂度,这种也称为最坏时间复杂度,一般没有特殊说明的情况下,指的都是最坏时间复杂度。

🟨 5.2、常见的时间复杂度例子

一、常数阶

java
int i,sum=0,n=100; // 执行1次
sum = (1 + n) * n / 2; // 执行1次
System.out.println(“sum=”+sum); // 执行1次

这个算法就是上面我们举例到的高斯算法,程序的执行次数函数为f(n) = 3,根据大O阶方法的推导方式,则得到的时间复杂度为:O(1),而不是O(3),注意:因为执行函数并不会随着n的变化而变化,它是恒定的,像复杂度为O(1),又被称作常数阶。

二、线性阶

java
int i,sum=0,n=100; // 执行1次
for(i=1;i<n;i++){
sum = sum + i; // 执行n次
}
System.out.println(“sum=”+sum); // 执行1次

根据上面的代码,我们可以发现执行次数函数为f(n) = n,根据大O阶方法的推导方式得到它的时间复杂度表示为:O(n)。 像这种线性阶,我们主要分析的是循环结构中的一个运行情况,从而得到它的时间复杂度。

三、对数阶

java
int condition = 1;
while(condition < n){
condition = condition * 2;
}

根据上面的代码,我们会发现循环语句的条件会在每次condition乘以2后更加接近跳出条件,既满足多少个与2的乘积后将会退出循环,因此我们可以得到执行次数的函数为:f(n) => 2x = n ===> x = log2n,根据大O阶方法的推导方式得到它的时间复杂度表示O(logn)。

四、平方阶

java
for(int i=o;i<n;i++){
for(int j=o;j<n;i++){
…
}
}

根据代码分析,我们可以得到执行次数的函数为: f(n) = n2,根据大O阶方法的推导方式得到它的时间复杂度表示O(n2)。

五、常见的时间复杂度耗费时间比较

O(1) < O(logn) < O(n) < O(nlogn) < O(n2) < O(n3) < O(2n ) < O(n!) < O(nn)

image.png

🟦 5.3、空间复杂度

在数据结构中,用空间复杂度来衡量程序运行所需内存空间的大小,跟时间复杂度类似,它也可以使用大O记法来表示。

算法的空间复杂度是通过计算算法所需的存储空间实现的,计算公式为:S(n) = O(f(n)),其中n为问题的规模,f(n)则为语句关于问题规模n所占存储空间的函数,随着n的变动,f(n)的增长率越小越好。

一个算法程序从编译到运行有多个部分涉及存储空间的分配,具体情况如下:

  • 程序代码本身需要占用一部分存储空间,用于存储编译后提供执行的代码,这部分的存储空间主要取决于程序的代码量,因此,为了减少这部分占用的空间,在保证算法的合理性情况下,应该尽量减少代码量。
  • 程序中的输入输出,也需要占用一部分存储空间,这部分的占用的空间主要取决于不同算法的实现逻辑,但是大体上它们的大小都是相差不大的。
  • 程序在运行时,不同情况下需要申请的临时空间,这部分占用的空间是对空间复杂度影响最大的,因为不同的算法实现细节可能存在较大的差异,会申请的空间也会存在比较大的不同。

一、常见的空间复杂度可以归类为以下的几种情况:

  • 如果算法执行时所需要的空间和算法的输入值无关,对于输入数据量来说是一个常数的话,则称该算法为 原地工作 空间复杂度为O(1)。
  • 如果随着输入数据量 n 的增大,程序申请的临时空间成线性增长,则程序的空间复杂度用 O(n) 表示。
  • 如果随着输入数据量 n 的增大,程序申请的临时空间成 n2 关系增长,则程序的空间复杂度用 O(n2) 表示。
  • 如果随着输入数据量 n 的增大,程序申请的临时空间成 n3 关系增长,则程序的空间复杂度用 O(n3) 表示。
  • 等等(和时间复杂度的推送逻辑类似)

坚持阅读到此处的小伙伴,恭喜你,在算法方面已经初步入门了,接下来就是需要多次阅读,将文章中没有理解清楚的概念搞清楚,然后再结合具体的算法(leetcode网站)进行实战,有了理论知识的支撑,相信你实战的脚本会更加快捷。

文章节选自华为云社区,作者:IT学习日记v
文章链接:So easy 10分钟搞懂时间复杂度和空间复杂度!

posted @ 2023-04-16 10:34  杨与S8  阅读(149)  评论(0编辑  收藏  举报