Android Studio 中的FindBugs插件使用,轻松帮你发现Bug (转)

在日常开发过程中难免会因为一时疏忽而留下一些Bug,这些Bug就是埋在程序里的定时炸弹,如果不能及时铲除就会导致程序的不稳定,异常或闪退的现象,从而导致用户的体验的下降。那么怎么才能找出这些埋在程序里的定时炸弹呢? 
 对程序员来说最头疼的事情莫过于找Bug了,尤其是找自己程序中的Bug,因为人的思维是有误区的,他很容易陷入当时开发程序时的思维,这样就很难发现埋藏在程序中的Bug。接下来就给大家分享一个Bugs分析的工具FindBugs。 
 Findbugs是由 National Science Foundation支持的一个用静态分析的方式来寻找Java代码中Bug的项目,它是一个静态分析工具,它检查类或者jar文件,将字节码和一组缺陷模式进行对比以发现可能的问题。有了静态分析工具,就可以在不实际运行程序的情况下对软件进行分析。不是通过分析类文件的形式或结构来确定程序的意图,而是通常使用Visitor模式来鉴别代码是否符合一些固定的规范。
PS. FindBugs无法分析程序中的业务逻辑Bug,所以说业务逻辑上的Bug还得需要开发人员根据具体的业务需求去查找。  
 Findbugs可作为一款插件用在Eclipse或 IntelliJ IDEA环境的编译器上。下面介绍一下在Android Studio中如何使用FindBugs。

在AndroidStudio上安装FindBugs
AndroidStudio提供在线和离线两种安装插件的方式。

在线安装FindBugs:
首先打开AndroidStudio的设置中的插件,输入FindBugs,如下图所示,点击Browse查找,选择FindBugs-IDEA然后单击右侧的Install plugin按钮进行安装(因为这里已经安装了FindBugs所以右侧没有Install plugin按钮)。如下图:

这里写图片描述

离线安装FindBugs:

首先,下载用于IntelliJ IDEA环环境下的FindBugs安装包,FindBugs-IDEA-0.9.997 下载地址。其次,打开AndroidStudio的设置中的插件,点击Install pluginfrom disk按钮选择刚才下载的FindBugs安装包进行安装即可。如下图:

这里写图片描述

FindBugs的基本使用
FindBugs安装完成之后需要重启AndroidStudio,重启之后会看到FindBugs的界面窗口,如下图:

这里写图片描述

FindBugs支持对包级别、项目级别、模块级别、单个文件级别,以及自定义范围的Bug分析。

附:FindBugs的Bug种类说明
● Bad practice 坏的实践
一些不好的实践,下面列举几个: HE: 类定义了equals,却没有hashCode;或类定义了equals,却使用Object.hashCode;或类定义了hashCode,却没有equals;或类定义了hashCode,却使用Object.equals;类继承了equals,却使用Object.hashCode。 SQL:Statement 的execute方法调用了非常量的字符串;或Prepared Statement是由一个非常量的字符串产生。 DE: 方法终止或不处理异常,一般情况下,异常应该被处理或报告,或被方法抛出。 Malicious code vulnerability 可能受到的恶意攻击
如果代码公开,可能受到恶意攻击的代码,下面列举几个: FI: 一个类的finalize应该是protected,而不是public的。 MS:属性是可变的数组;属性是可变的Hashtable;属性应该是package protected的。
● Correctness 一般的正确性问题
可能导致错误的代码,下面列举几个:
NP: 空指针被引用;在方法的异常路径里,空指针被引用;方法没有检查参数是否null;null值产生并被引用;
null值产生并在方法的异常路径被引用;
传给方法一个声明为@NonNull的null参数;
方法的返回值声明为@NonNull实际是null。
Nm: 类定义了hashcode方法,但实际上并未覆盖父类Object的hashCode;类定义了tostring方法,但实际上并未覆盖父类Object的toString;很明显的方法和构造器混淆;方法名容易混淆。
SQL:方法尝试访问一个Prepared Statement的0索引;方法尝试访问一个ResultSet的0索引。
UwF:所有的write都把属性置成null,这样所有的读取都是null,这样这个属性是否有必要存在;或属性从没有被write。
● Dodgy 危险的
具有潜在危险的代码,可能运行期产生错误,下面列举几个:
CI: 类声明为final但声明了protected的属性。
DLS:对一个本地变量赋值,但却没有读取该本地变量;本地变量赋值成null,却没有读取该本地变量。
ICAST: 整型数字相乘结果转化为长整型数字,应该将整型先转化为长整型数字再相乘。
INT:没必要的整型数字比较,如X <= Integer.MAX_VALUE。 NP: 对readline的直接引用,而没有判断是否null;对方法调用的直接引用,而方法可能返回null。 REC:直接捕获Exception,而实际上可能是RuntimeException。 ST: 从实例方法里直接修改类变量,即static属性。
● Performance 性能问题
可能导致性能不佳的代码,下面列举几个:
DM:方法调用了低效的Boolean的构造器,而应该用Boolean.valueOf(…);
用类似Integer.toString(1) 代替new Integer(1).toString;
方法调用了低效的float的构造器,应该用静态的valueOf方法。
SIC:如果一个内部类想在更广泛的地方被引用,它应该声明为static。
SS: 如果一个实例属性不被读取,考虑声明为static。
UrF:如果一个属性从没有被read,考虑从类中去掉。
UuF:如果一个属性从没有被使用,考虑从类中去掉。
● Multithreaded correctness 多线程的正确性多线程编程时,可能导致错误的代码,下面列举几个:
ESync:空的同步块,很难被正确使用。
MWN:错误使用notify,可能导致IllegalMonitorStateException异常;或错误的使用wait。
No: 使用notify而不是notifyAll,只是唤醒一个线程而不是所有等待的线程。
SC: 构造器调用了Thread.start,当该类被继承可能会导致错误。
● Internationalization 国际化 当对字符串使用upper或lowercase方法,如果是国际的字符串,可能会不恰当的转换。

posted @ 2017-08-30 10:33  杨斌_济南  阅读(1467)  评论(0编辑  收藏  举报