BitmapFactory.Options详解
在通过BitmapFactory.decodeFile(String path)方法将突破转成Bitmap时,遇到大一些的图片,我们经常会遇到OOM(Out Of Memory)的问题。怎么避免它呢? 这就用到了我们上面提到的BitmapFactory.Options这个类。
BitmapFactory.Options这个类,有一个字段叫做 inJustDecodeBounds 。SDK中对这个成员的说明是这样的: If set to true, the decoder will return null (no bitmap), but the out… 也就是说,如果我们把它设为true,那么BitmapFactory.decodeFile(String path, Options opt)并不会真的返回一个Bitmap给你,它仅仅会把它的宽,高取回来给你,这样就不会占用太多的内存,也就不会那么频繁的发生OOM了。
示例代码如下:
- BitmapFactory.Options options = new BitmapFactory.Options();
- options.inJustDecodeBounds = true;
- Bitmap bmp = BitmapFactory.decodeFile(path, options);
复制代码
这段代码之后,options.outWidth 和 options.outHeight就是我们想要的宽和高了。
有了宽,高的信息,我们怎样在图片不变形的情况下获取到图片指定大小的缩略图呢? 比如我们需要在图片不变形的前提下得到宽度为200的缩略图。 那么我们需要先计算一下缩放之后,图片的高度是多少
- int height = options.outHeight * 200 / options.outWidth;
- options.outWidth = 200;
- options.outHeight = height;
- options.inJustDecodeBounds = false;
- Bitmap bmp = BitmapFactory.decodeFile(path, options);
- image.setImageBitmap(bmp);
复制代码
这样虽然我们可以得到我们期望大小的ImageView 但是在执行BitmapFactory.decodeFile(path, options);时,并没有节约内存。要想节约内存,还需要用到BitmapFactory.Options这个类里的 inSampleSize 这个成员变量。 我们可以根据图片实际的宽高和我们期望的宽高来计算得到这个值。
- inSampleSize = options.outWidth / 200;
另外,为了节约内存我们还可以使用下面的几个字段:
- options.inPreferredConfig = Bitmap.Config.ARGB_4444; // 默认是Bitmap.Config.ARGB_8888
- options.inPurgeable = true;
- options.inInputShareable = true;
BitmapFactory.Options.inSampleSize
设置恰当的inSampleSize可以使BitmapFactory分配更少的空间以消除该错误。inSampleSize的具体含义请参考SDK文档。例如:
BitmapFactory.Options opts = new BitmapFactory.Options();
opts.inSampleSize = 4;
Bitmap bitmap = BitmapFactory.decodeFile(imageFile, opts);
设置恰当的inSampleSize是解决该问题的关键之一。BitmapFactory.Options提供了另一个成员inJustDecodeBounds。
BitmapFactory.Options opts = new BitmapFactory.Options(); opts.inJustDecodeBounds = true; Bitmap bitmap = BitmapFactory.decodeFile(imageFile, opts);
设置inJustDecodeBounds为true后,decodeFile并不分配空间,但可计算出原始图片的长度和宽度,即opts.width和opts.height。有了这两个参数,再通过一定的算法,即可得到一个恰当的inSampleSize。
查看Android源码,我们得知,为了得到恰当的inSampleSize,Android提供了一种动态计算的方法。
public static int computeSampleSize(BitmapFactory.Options options, int minSideLength, int maxNumOfPixels) { int initialSize = computeInitialSampleSize(options, minSideLength, maxNumOfPixels); int roundedSize; if (initialSize <= 8) { roundedSize = 1; while (roundedSize < initialSize) { roundedSize <<= 1; } } else { roundedSize = (initialSize + 7) / 8 * 8; } return roundedSize; } private static int computeInitialSampleSize(BitmapFactory.Options options, int minSideLength, int maxNumOfPixels) { double w = options.outWidth; double h = options.outHeight; int lowerBound = (maxNumOfPixels == -1) ? 1 : (int) Math.ceil(Math.sqrt(w * h / maxNumOfPixels)); int upperBound = (minSideLength == -1) ? 128 : (int) Math.min(Math.floor(w / minSideLength), Math.floor(h / minSideLength)); if (upperBound < lowerBound) { // return the larger one when there is no overlapping zone. return lowerBound; } if ((maxNumOfPixels == -1) && (minSideLength == -1)) { return 1; } else if (minSideLength == -1) { return lowerBound; } else { return upperBound; } } 使用该算法,就可动态计算出图片的inSampleSize。 BitmapFactory.Options opts = new BitmapFactory.Options(); opts.inJustDecodeBounds = true; BitmapFactory.decodeFile(imageFile, opts); opts.inSampleSize = computeSampleSize(opts, -1, 128*128); opts.inJustDecodeBounds = false; try { bmp = BitmapFactory.decodeFile(imageFile, opts); imageView.setImageBitmap(bmp); } catch (OutOfMemoryError err) { }
源代码如下:
public static Bitmap createImageThumbnail(String filePath){ Bitmap bitmap = null; BitmapFactory.Options opts = new BitmapFactory.Options(); opts.inJustDecodeBounds = true; BitmapFactory.decodeFile(filePath, opts); opts.inSampleSize = computeSampleSize(opts, -1, 128*128); opts.inJustDecodeBounds = false; try { bitmap = BitmapFactory.decodeFile(filePath, opts); }catch (Exception e) { // TODO: handle exception } return bitmap; } public static int computeSampleSize(BitmapFactory.Options options, int minSideLength, int maxNumOfPixels) { int initialSize = computeInitialSampleSize(options, minSideLength, maxNumOfPixels); int roundedSize; if (initialSize <= 8) { roundedSize = 1; while (roundedSize < initialSize) { roundedSize <<= 1; } } else { roundedSize = (initialSize + 7) / 8 * 8; } return roundedSize; } private static int computeInitialSampleSize(BitmapFactory.Options options,int minSideLength, int maxNumOfPixels) { double w = options.outWidth; double h = options.outHeight; int lowerBound = (maxNumOfPixels == -1) ? 1 : (int) Math.ceil(Math.sqrt(w * h / maxNumOfPixels)); int upperBound = (minSideLength == -1) ? 128 :(int) Math.min(Math.floor(w / minSideLength), Math.floor(h / minSideLength)); if (upperBound < lowerBound) { // return the larger one when there is no overlapping zone. return lowerBound; } if ((maxNumOfPixels == -1) && (minSideLength == -1)) { return 1; } else if (minSideLength == -1) { return lowerBound; } else { return upperBound; } }
项目实战代码:
/** * 不full load图片,先根据一定的算法缩小再load * * @param path * @return */ public static Bitmap loadBitmapFromFile(String path, int thumbWidth, int thumbHeight) { Bitmap bmp = null; BitmapFactory.Options opts = new BitmapFactory.Options(); /* * 设置inJustDecodeBounds为true后,decodeFile并不分配空间,但可计算出原始图片的长度和宽度,即opts.width和opts.height。 * 有了这两个参数,再通过一定的算法,即可得到一个恰当的inSampleSize */ opts.inJustDecodeBounds = true; BitmapFactory.decodeFile(path, opts); opts.inSampleSize = calculateInSampleSize(opts, thumbWidth, thumbHeight); //这里一定要将其设置回false,因为之前我们将其设置成了true opts.inJustDecodeBounds = false; try { bmp = BitmapFactory.decodeFile(path, opts); } catch (OutOfMemoryError e) { Logger.e(TAG, e.getMessage()); } return bmp; } //计算图片的缩放值 public static int calculateInSampleSize(BitmapFactory.Options options, int reqWidth, int reqHeight) { final int height = options.outHeight; final int width = options.outWidth; int inSampleSize = 1; if (height > reqHeight || width > reqWidth) { final int heightRatio = Math.round((float) height / (float) reqHeight); final int widthRatio = Math.round((float) width / (float) reqWidth); inSampleSize = heightRatio < widthRatio ? heightRatio : widthRatio; } return inSampleSize; } /** * 不full load图片,先根据一定的算法缩小再load * * @param path * @return */ public static Bitmap loadBitmapFromFile(String path) { Bitmap bmp = null; BitmapFactory.Options opts = new BitmapFactory.Options(); /* * 设置inJustDecodeBounds为true后,decodeFile并不分配空间,但可计算出原始图片的长度和宽度,即opts.width和opts.height。 * 有了这两个参数,再通过一定的算法,即可得到一个恰当的inSampleSize */ opts.inJustDecodeBounds = true; BitmapFactory.decodeFile(path, opts); opts.inSampleSize = computeSampleSize(opts, -1, 512 * 512); //这里一定要将其设置回false,因为之前我们将其设置成了true opts.inJustDecodeBounds = false; try { bmp = BitmapFactory.decodeFile(path, opts); } catch (OutOfMemoryError e) { Logger.e(TAG, e.getMessage()); } return bmp; } public static Bitmap loadBitmapFromUrl(Context ctx, String url) { File path = ctx.getCacheDir(); String hashedURLString = hashURLString(url); String finalPath = new File(path, hashedURLString).getAbsolutePath(); boolean ok = FileUtils.saveUrl(finalPath, url); if (ok) { return loadBitmapFromFile(finalPath); } return null; } /** * 将图片先放到临时空间中,再读取图片。full load * * @param path * @return */ public static Bitmap loadBitmapFromFileX(String path) { BitmapFactory.Options bfOptions = new BitmapFactory.Options(); bfOptions.inDither = false; bfOptions.inPurgeable = true; bfOptions.inTempStorage = new byte[12 * 1024]; File file = new File(path); FileInputStream fs = null; Bitmap bmp = null; try { fs = new FileInputStream(file); bmp = BitmapFactory.decodeFileDescriptor(fs.getFD(), null, bfOptions); } catch (FileNotFoundException e) { e.printStackTrace(); } catch (IOException e) { e.printStackTrace(); } catch (OutOfMemoryError e) { e.printStackTrace(); } finally { try { if (fs != null) { fs.close(); } } catch (IOException e) { e.printStackTrace(); } } return bmp; } public static int computeSampleSize(BitmapFactory.Options options, int minSideLength, int maxNumOfPixels) { int initialSize = computeInitialSampleSize(options, minSideLength, maxNumOfPixels); int roundedSize; if (initialSize <= 8) { roundedSize = 1; while (roundedSize < initialSize) { roundedSize <<= 1; } } else { roundedSize = (initialSize + 7) / 8 * 8; } return roundedSize; } private static int computeInitialSampleSize(BitmapFactory.Options options, int minSideLength, int maxNumOfPixels) { double w = options.outWidth; double h = options.outHeight; int lowerBound = (maxNumOfPixels == -1) ? 1 : (int) Math.ceil(Math.sqrt(w * h / maxNumOfPixels)); int upperBound = (minSideLength == -1) ? 128 : (int) Math.min(Math.floor(w / minSideLength), Math.floor(h / minSideLength)); if (upperBound < lowerBound) { return lowerBound; } if ((maxNumOfPixels == -1) && (minSideLength == -1)) { return 1; } else if (minSideLength == -1) { return lowerBound; } else { return upperBound; } } private static String hashURLString(String urlString) { try { // Create MD5 Hash MessageDigest digest = java.security.MessageDigest.getInstance("MD5"); digest.update(urlString.getBytes()); byte messageDigest[] = digest.digest(); // Create Hex String StringBuffer hexString = new StringBuffer(); for (int i=0; i<messageDigest.length; i++) hexString.append(Integer.toHexString(0xFF & messageDigest[i])); return hexString.toString(); } catch (NoSuchAlgorithmException e) { e.printStackTrace(); } //fall back to old method return urlString.replaceAll("[^A-Za-z0-9]", "#"); }