集合 Subset Sums

题目描述
对于从1到N的连续整集合合,能划分成两个子集合,且保证每个集合的数字和是相等的。

举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,他们每个的所有数字和是相等的:

{3} and {1,2}

这是唯一一种分发(交换集合位置被认为是同一种划分方案,因此不会增加划分方案总数)

如果N=7,有四种方法能划分集合{1,2,3,4,5,6,7},每一种分发的子集合各数字和是相等的:

{1,6,7} and {2,3,4,5} {注 1+6+7=2+3+4+5}

{2,5,7} and {1,3,4,6}

{3,4,7} and {1,2,5,6}

{1,2,4,7} and {3,5,6}

给出N,你的程序应该输出划分方案总数,如果不存在这样的划分方案,则输出0。程序不能预存结果直接输出。

PROGRAM NAME: subset

INPUT FORMAT

输入文件只有一行,且只有一个整数N

SAMPLE INPUT (file subset.in)

7

OUTPUT FORMAT

输出划分方案总数,如果不存在则输出0。

SAMPLE OUTPUT (file subset.out)

4

.
.
.
.
.
分析
1…n的数字之和为sum=n*(n+1)/2
由此可知等号一边的数字之和为s=sum/2
由于集合的数字以及它们的和必须为整数,所以sum为奇数则无划分方案

我们设f[i]表示和为i的组数
f[0]=1
f[j]+=f[j-i] {1<=i<=n;i<=j<=s}

.
.
.
.
.
.
程序

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int main()
{
	long long n,f[1000000];
    scanf("%lld",&n);
    int s=n*(n+1);
    if (s%4!=0)
    {
    	printf("0");
    	return 0;
	}
	
	f[0]=1;
	s/=4;
	for (long long i=1;i<=n;i++)
	{
		for (long long j=s;j>=i;j--)
		f[j]+=f[j-i];
	}
	printf("%lld",f[s]/2);
    return 0;
}
posted @ 2019-01-17 20:39  银叶草  阅读(202)  评论(0编辑  收藏  举报
Live2D