posts - 244,  comments - 2,  views - 59109

链接:

http://poj.org/problem?id=1797

 

Heavy Transportation
Time Limit: 3000MS   Memory Limit: 30000K
Total Submissions: 25089   Accepted: 6647

Description

Background 
Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand business. But he needs a clever man who tells him whether there really is a way from the place his customer has build his giant steel crane to the place where it is needed on which all streets can carry the weight. 
Fortunately he already has a plan of the city with all streets and bridges and all the allowed weights.Unfortunately he has no idea how to find the the maximum weight capacity in order to tell his customer how heavy the crane may become. But you surely know. 

Problem 
You are given the plan of the city, described by the streets (with weight limits) between the crossings, which are numbered from 1 to n. Your task is to find the maximum weight that can be transported from crossing 1 (Hugo's place) to crossing n (the customer's place). You may assume that there is at least one path. All streets can be travelled in both directions.

Input

The first line contains the number of scenarios (city plans). For each city the number n of street crossings (1 <= n <= 1000) and number m of streets are given on the first line. The following m lines contain triples of integers specifying start and end crossing of the street and the maximum allowed weight, which is positive and not larger than 1000000. There will be at most one street between each pair of crossings.

Output

The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the maximum allowed weight that Hugo can transport to the customer. Terminate the output for the scenario with a blank line.

Sample Input

1
3 3
1 2 3
1 3 4
2 3 5

Sample Output

Scenario #1:
4

 

代码:

复制代码
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;

#define N 1100
#define INF 0x3f3f3f3f3f

int n, m, dist[N], G[N][N], v[N];

int DIST(int S, int E)
{
    dist[1]=0;
    v[1]=1;

    for(int i=1; i<=n; i++)
        dist[i] = G[1][i];

    for(int i=1; i<=n; i++)
    {
        int index=-1, MAX=-1;

        for(int j=1; j<=n; j++)
        {
            if(v[j]==0 && dist[j]>MAX)
            {
                index = j, MAX = dist[j];
            }
        }
        v[index]=1;

        for(int j=1; j<=n; j++)
        {
            if(v[j]==0)
            {
                int tmp = min(dist[index], G[index][j]);
                if(tmp>dist[j])
                    dist[j]=tmp;
            }
        }
    }
    return dist[E];
}

int main()
{
    int t, k=1;

    scanf("%d", &t);

    while(t--)
    {
        int a, b, w, i;
        scanf("%d%d", &n, &m);

        memset(v, 0, sizeof(v));
        memset(G, -1, sizeof(G));

        for(i=1; i<=m; i++)
        {
            scanf("%d%d%d", &a, &b, &w);
            G[a][b]=G[b][a]=max(G[a][b], w);
        }

        int ans = DIST(1, n);

        printf("Scenario #%d:\n", k++);
        printf("%d\n\n", ans);
    }
    return 0;
}
复制代码

类似于 最大生成树

 

复制代码
#include <iostream>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
using namespace std;
const int INF = (1<<30)-1;
#define min(a,b) (a<b?a:b)
#define max(a,b) (a>b?a:b)
#define N 1100


int n, m, dist[N], G[N][N], vis[N];

int prim()
{
    int i, j, ans = INF;

    for(i=1; i<=n; i++)
        dist[i] = G[1][i];
    dist[1] = 0;

    memset(vis, 0, sizeof(vis));
    vis[1] = 1;

    for(i=1; i<=n; i++)
    {
        int index = 1, Max = -1;
        for(j=1; j<=n; j++)
        {
            if(!vis[j] && dist[j]>Max)
            {
                Max = dist[j];
                index = j;
            }
        }

        if(index==1) break;

        vis[index] = 1;

        ans = min(ans, Max);

        if(index==n) return ans;  ///当到达 n 点的时候结束

        for(j=1; j<=n; j++)
        {
            if(!vis[j] && dist[j]<G[index][j])
               dist[j] = G[index][j];
        }
    }

    return ans;
}


int main()
{
    int t, iCase=1;
    scanf("%d", &t);
    while(t--)
    {
        int i, u, v, x;

        scanf("%d%d", &n, &m);

        memset(G, -1, sizeof(G));

        for(i=1; i<=m; i++)
        {
            scanf("%d%d%d", &u, &v, &x);
            G[u][v] = G[v][u] = max(G[u][v], x);
        }

        printf("Scenario #%d:\n%d\n\n", iCase++, prim());
    }
    return 0;
}
复制代码

 

posted on   栀蓝  阅读(171)  评论(0编辑  收藏  举报
编辑推荐:
· 深入理解 Mybatis 分库分表执行原理
· 如何打造一个高并发系统?
· .NET Core GC压缩(compact_phase)底层原理浅谈
· 现代计算机视觉入门之:什么是图片特征编码
· .NET 9 new features-C#13新的锁类型和语义
阅读排行:
· Spring AI + Ollama 实现 deepseek-r1 的API服务和调用
· 《HelloGitHub》第 106 期
· 数据库服务器 SQL Server 版本升级公告
· 深入理解Mybatis分库分表执行原理
· 使用 Dify + LLM 构建精确任务处理应用
< 2025年1月 >
29 30 31 1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31 1
2 3 4 5 6 7 8

levels of contents
点击右上角即可分享
微信分享提示