数据库的锁
行锁和表锁
主要是针对锁粒度划分的,一般分为行锁、表锁、库锁
行锁:访问数据库的时候,锁定整个行数据,防止并发错误。
表锁:访问数据库的时候,锁定整个表数据,防止并发错误。
二者的区别:
表锁:开销小,加锁快,不会出现死锁;锁定粒度大,发生锁冲突概率高,并发度最低。
行锁:开销大,加锁慢,会出现死锁;锁定粒度小,发生锁冲突的概率低,并发度高。
乐观锁和悲观锁
乐观锁:顾名思义,就是很乐观,每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有更新这个数据,可以使用版本号等机制。
乐观锁适用于多读的应用类型,这样可以提高吞吐量,像数据库如果提供类似于write_condition机制的其实都是体用乐观锁。在 Java 中 java.util.concurrent.atomic 包下面的原子变量类就是使用了乐观锁的一种实现方式 CAS 实现的。
悲观锁:顾名思义,就是很悲观,每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会 block 知道它拿到锁。
传统的关系型数据库里面就用到了很多这种锁机制,比如行锁、表锁、读锁、写锁等,都是在操作之前先上锁。在Java 中 synchronized 和 ReentrantLock 等独占锁就是悲观锁思想的实现。
————————————————
版权声明:本文为CSDN博主「我真真的是小白」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/m0_53067943/article/details/123872089
如果您觉得阅读本文对您有帮助,请点一下“推荐”按钮,您的“推荐”将是我最大的写作动力!欢迎各位转载,但是未经作者本人同意,转载文章之后必须在文章页面明显位置给出作者和原文连接,否则保留追究法律责任的权利。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 25岁的心里话
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· ollama系列01:轻松3步本地部署deepseek,普通电脑可用
· 按钮权限的设计及实现