数组中最大的子数组之和

一个有N个整数元素的一维数组(A[0]、A[1],...A[n-1]),求子数组之和的最大值。

例子:
[1, -2, 3, 5, -3, 2] 返回:8
[0, -2, 3, 5, -1, 2] 返回:9
[-9, -2, -3, -5, -3] 返回:-2

思路:从头遍历数组元素,并累加求和,如果和小于0就自当前元素从新开始,否则就一直累加,取其中最大值便为解。

方法1:蛮力法 时间复杂度为O(N^2).
int MaxSum1(int *arr,int n)
{
    int sum = 0,max = INT_MIN;
    for(int i = 0; i<n; ++i)
    {
        sum = 0;
        for(int j = i;j<n; ++j)
        {
            sum += arr[j];
            if(sum>max)
                max = sum;
        }
    }
    return max;
}
 
方法2:这种方法网上很多,但是还是以编程之美上面提供的代码最为规范,它可以处理所有数都为负数和情况。大体思想,是如果子数组和为负数了,则抛弃现在在算的子数组,以下一个元素为头重新开始计算子数组之和,因为一个数与负数的和肯定会小于这个数本身。时间复杂度为: O(N)
int MaxSum2(int *A, int n)
{
    int nStart = A[n-1];
    int nAll = A[n-1];    
    for(int i = n-2;i>=0;--i)
    {
        if(nStart<0)
            nStart = 0;
        nStart += A[i];
        if(nStart>=nAll)
        {
            nAll = nStart;           
        }
    }
    return nAll;
}
 
方法3:分治法
设A[i]为数组中的一个任意元素,则对于最大连续子数组和,有:
1、若最大子数组和中包括A[i]这个元素,则从A[i]往左找,找出左边的最大值,再从A[i]往右找,找出右边的最大值,相加即得。
2、若最大子数组和中不包括A[i]这个元素,则最大子数组和是A[0],...A[i-1]和A[i+1]...A[n-1]两个子数组最大和的最大值。
时间复杂度为O(NlgN)
int MaxSum3(int *A,int beg,int end)
{
    if(beg==end)
        return A[beg-1];
    int mid = (beg+end)/2;
    int left = MaxSum3(A,beg,mid);
    int right = MaxSum3(A,mid+1,end);
    int sum = A[mid-1];
    int i = mid-1, j = mid+1;
    int maxsum = A[mid-1];
    while(i>=beg)
    {
        sum+= A[i-1];
        if(sum>maxsum)
            maxsum = sum;
        --i;
    }
    sum = maxsum;
    while(j<=end)
    {
        sum+=A[j-1];
        if(sum>maxsum)
            maxsum = sum;
        ++j;
    }
    int max = left>right?left:right;
    max = max>maxsum?max:maxsum;
    return max;
}
 
需要注意的是,如果考虑到数组首尾相连,需要按以下步骤做出改进:
1、先按不相连计算出最大值max
2、从尾往头扫描,找出最大值m1,并记录最大位置i,再从头往尾扫描,找出最大值m2, 并记录最大位置j,若i>j,则比较m1+m2与max,求出最大值,若i<=j,则令m = A[0]+A[1]+A[2]+...A[n-1],求出m和max之间的最大值。
 
int MaxSum4(int *A, int n,int &beg,int &end)
{
    if(A==NULL||n<=1)
    {
        cout<<"error input"<<'\n';
        exit(0);
    }
    if(n==1)
        return A[0];
    int pos = 0;
    int CurSum = A[0];
    int MaxSum = A[0];
    for(int i = 1; i<n;++i)
    {
        if(CurSum<=0)
            CurSum = 0;
        CurSum += A[i];
        if(CurSum>=MaxSum)
        {
            MaxSum = CurSum;
            pos = i;
        }
    }
    int pos1 = 0,max1 = A[0];
    CurSum = A[0]; 
    for(int i = 1;i<=n-1;++i)
    {
        CurSum += A[i];
        if(CurSum>=max1)
        {
            max1 = CurSum;
            pos1 = i;
        }
    }
    CurSum = A[n-1];
    int pos2 = n-1, max2 = A[n-1];
    for(int j = n-2; j>=0; --j)
    {
        CurSum += A[j];
        if(CurSum>=max2)
        {
            max2 = CurSum;
            pos2 = j;
        }
    }
    int sum = 0;
    if(pos1>=pos2)
    {
        for(int i = 0; i<n; ++i)
            sum+=A[i];
    }
    else
    {
        for(int i = 0; i<=pos1; ++i)
        {
            sum+=A[i];
        }
        for(int j = n-1; j>=pos2; --j)
        {
            sum+=A[j];
        }
    }
    int temp = MaxSum>sum?MaxSum:sum;
    if(MaxSum==temp)
    {
        end = pos;
        while(temp!=0)
        {
            temp-=A[pos--];
        }
        beg = ++pos;
        return MaxSum;
    }
    else
    {
        if(pos1>=pos2)
        {
            beg = 0;
            end = n-1;
        }
        else
        {
            end = pos2;
            beg = pos1;
        }
        return sum;
    }
    return MaxSum>sum?MaxSum:sum;
}
posted @ 2017-03-28 18:43  lshuxun28  阅读(308)  评论(0编辑  收藏  举报