Processing math: 100%

[2019 CSP-S赛前集训] [P1450] [蒟蒻Xx_queue学DP] 2.硬币购物

题目链接:https://www.luogu.org/problem/P1450

题目描述

硬币购物一共有4种硬币。面值分别为c1,c2,c3,c4。某人去商店买东西,去了tot次。每次带di枚ci硬币,买si的价值的东西。请问每次有多少种付款方法。

分析:相信各位小伙伴和我一样,第一眼看这个题:这不是个多重背包的板子题吗??

But,看一下数据范围,这么暴力的做法根本行不通啊,T飞去了;

那有什么巧妙的方法来解决这道题呢?

如果说对于每个询问,没有硬币数量的限制,那就是个完全背包是吧,相信大家一定都能看出来的;

那么我们是不是可以想一想,拿这个完全背包减掉不符合限制的那一部分,是不是就是答案了呢?

这个还是比较好办的啊,不合法的方案就是f[s(dj+1)cj](j为第几种硬币),想一想为什么?

我先固定把这种硬币用上dj+1个,这样得到的结果一定是不合法的,那么不合法的方案数自然就是:总和扣掉dj+1cj硬币后的完全背包方法种数;

是不是非常巧妙?(没错我也是看了题解的)

所以最终答案就是f[s]4j=1f[s(dj+1)cj];

所以要怎样求这个答案呢?这里还有一点点小问题:你使用硬币1的不合法方案与你使用硬币2的不合法方案有重叠,怎么解决?

容斥一下就好了;怎么容斥?详见代码.

注意事项:1.开long long!不开只有50分亲测;

2.预处理f[0]=1(凑齐0元只有一种方案:什么都不选),否则程序输出为0;

#include <bits/stdc++.h>
#define int long long
#define N (100000+5)
using namespace std;
int tot,ans,ss;
int c[5],d[5],dp[N];
void dfs(int k,int s,int p){//当前第k种硬币,剩余s元要凑,p为符号判断;
	if(s<0) return;//凑够了(多了),return
	if(k==5){//硬币种类已经选完
		ans+=dp[s]*p;//ans加一下,容斥
		return;
	}
	dfs(k+1,s,p);//符合限制的方案
	dfs(k+1,s-(d[k]+1)*c[k],-p);//不符合限制的方案,注意变号
}
signed main(){
	 for(int i=1;i<=4;i++)scanf("%lld",&c[i]);
	scanf("%lld",&tot);
	dp[0]=1;
	for(int i=1;i<=4;i++){
		for(int j=c[i];j<=100000;j++){
			dp[j]=dp[j]+dp[j-c[i]];
		}
	}//完全背包
	for(int i=1;i<=tot;i++){
		ans=0;
		for(int j=1;j<=4;j++)scanf("%lld",&d[j]);
		scanf("%lld",&ss);
		dfs(1,ss,1);
		printf("%lld\n",ans);
	}
	return 0;
}

但愿大家能看懂吧......

反正我们机房的某些大佬写的博客实在是晦涩难懂,满篇幅的都是"......即可","显然......";

实在是跟不上dalao们的思维啊,看来我还要加油啊!

posted @   Xx_queue  阅读(132)  评论(0编辑  收藏  举报
编辑推荐:
· 从二进制到误差:逐行拆解C语言浮点运算中的4008175468544之谜
· .NET制作智能桌面机器人:结合BotSharp智能体框架开发语音交互
· 软件产品开发中常见的10个问题及处理方法
· .NET 原生驾驭 AI 新基建实战系列:向量数据库的应用与畅想
· 从问题排查到源码分析:ActiveMQ消费端频繁日志刷屏的秘密
阅读排行:
· C# 13 中的新增功能实操
· Ollama本地部署大模型总结
· 【杭电多校比赛记录】2025“钉耙编程”中国大学生算法设计春季联赛(4)
· 卧槽!C 语言宏定义原来可以玩出这些花样?高手必看!
· langchain0.3教程:从0到1打造一个智能聊天机器人
点击右上角即可分享
微信分享提示