前言
中考时同学问的,在此总结。
题目描述
有一个石头剪刀布游戏。你面前有 \(4\) 个人。每次和前面的人石头剪刀布,赢了就“过了”这个人,平局不动,输了就向后退到前一个人,当然,如果在起点输了不用后退。请问“过了”这 \(4\) 个人进行的石头剪刀布的期望局数是多少。
推广到 \(n\) 的形式化的题意:
一维空间内,一次行动为:前进一步,后退一步,原地不动,概率均为 \(\cfrac{1}{3}\),\(0\) 点后退后还是 \(0\) 点。求从 \(0\) 点走到右端点 \(n\) 的期望行动步数。
解决
套路化记 \(f[i]\) 表示从 \(i\) 走到 \(n\) 的期望。那么有 \(f[i] = \cfrac{f[i]}{3} + \cfrac{f[i - 1]}{3} + \cfrac{f[i + 1]}{3} + 1\),化简后有 \(f[i] = \cfrac{f[i - 1] + f[i + 1] + 3}{2}\)。特殊地,\(f[0] = f[1] + 3\)。
从后向前递推。
\[f[n] = 0
\]
这是边界。
\[f[n - 1] = \cfrac{f[n - 2] + 3}{2}
\]
代入。
\[\begin{aligned}
f[n - 2] &= \cfrac{f[n - 3] + f[n - 1] + 3}{2} \\
&= \cfrac{f[n - 3] + \cfrac{f[n - 2] + 3}{2} + 3}{2} \\
\Rightarrow f[n - 2] &= \cfrac{2f[n - 3] + 9}{3}
\end{aligned}
\]
继续。
\[\begin{aligned}
f[n - 3] &= \cfrac{f[n - 4] + f[n - 2] + 3}{2} \\
&= \cfrac{f[n - 4] + \cfrac{2f[n - 3] + 9}{3} + 3}{2} \\
\Rightarrow f[n - 3] &= \cfrac{3f[n - 4] + 18}{4}
\end{aligned}
\]
这么做看不出什么规律,考虑记 \(f[i] = k[i] \cdot f[i - 1] + b[i]\)
有 \(\left\{\begin{matrix}
k[n - 1] = \cfrac{1}{2} \\
b[n - 1] = \cfrac{3}{2}
\end{matrix}\right.\)。
考虑求递推式:
\[\begin{aligned}
f[i] &= \cfrac{f[i - 1] + f[i + 1] + 3}{2} \\
&= \cfrac{f[i - 1] + k[i + 1] \cdot f[i] + b[i + 1] + 3}{2} \\
\Rightarrow f[i] &= \cfrac{f[i - 1] + b[i + 1] + 3}{2 - k[i + 1]}
\end{aligned}
\]
即 \(\left\{\begin{matrix}
k[i] = \cfrac{1}{2 - k[i + 1]} \\
b[i] = \cfrac{b[i + 1] + 3}{2 - k[i + 1]}
\end{matrix}\right.\)
俩数列?
先来看看 \(k\)
\[\cfrac{1}{2}, \cfrac{2}{3}, \cfrac{3}{4}, \cfrac{4}{5}, \cfrac{5}{6}, \cfrac{6}{7}, \cfrac{7}{8}, \cfrac{8}{9}, \cfrac{9}{10}, \cfrac{10}{11}, \cfrac{11}{12}, \cfrac{12}{13}, \cfrac{13}{14}, \cfrac{14}{15}, \cfrac{15}{16}, \cfrac{16}{17}, \cfrac{17}{18}, \cfrac{18}{19}, \cfrac{19}{20}, \cfrac{20}{21}, \ldots
\]
似乎 \(k[n - i] = \cfrac{i}{i + 1}\)。
归纳一下?
对于 \(i = 1\) 成立。假设对于 \(n - (i - 1)\) 成立。则:
\[\begin{aligned}
k[n - i] &= \cfrac{1}{2 - k[n - (i - 1)]} \\
&= \cfrac{1}{2 - \cfrac{i - 1}{i}} \\
&= \cfrac{i}{2i - i + 1} \\
&= \cfrac{i}{i + 1}
\end{aligned}
\]
成立,则证毕。
再来看看复杂些的 \(b\)
\[\cfrac{3}{2}, 3, \cfrac{9}{2}, 6, \cfrac{15}{2}, 9, \cfrac{21}{2}, 12, \cfrac{27}{2}, 15, \cfrac{33}{2}, 18, \cfrac{39}{2}, 21, \cfrac{45}{2}, 24, \cfrac{51}{2}, 27, \cfrac{57}{2}, 30, \ldots
\]
情不自禁地变换一下。
\[\cfrac{3}{2}, \cfrac{6}{2}, \cfrac{9}{2}, \cfrac{12}{2}, \cfrac{15}{2}, \cfrac{18}{2}, \cfrac{21}{2}, \cfrac{24}{2}, \cfrac{27}{2}, \cfrac{30}{2}, \cfrac{33}{2}, \cfrac{36}{2}, \cfrac{39}{2}, \cfrac{42}{2}, \cfrac{45}{2}, \cfrac{48}{2}, \cfrac{51}{2}, \cfrac{54}{2}, \cfrac{57}{2}, \cfrac{60}{2}, \ldots
\]
哦,似乎 \(b[n - i] = \cfrac{3i}{2}\),归一下纳。
对于 \(i = 1\) 成立。假设对于 \(n - (i - 1)\) 成立。则:
\[\begin{aligned}
b[n - i] &= \cfrac{b[n - (i - 1)] + 3}{2 - k[n - (i - 1)]} \\
&= \cfrac{\cfrac{3(i - 1)}{2} + 3}{2 - \cfrac{i - 1}{i}} \\
&= \cfrac{3i(i - 1) + 6i}{4i - 2(i - 1)} \\
&= \cfrac{3i^2 + 3i}{2i + 2} \\
&= \cfrac{3i}{2}
\end{aligned}
\]
成立,则证毕。
得出结论
那么回到一开始的问题:
\[\begin{aligned}
f[0] &= f[1] + 3 \\
&= k[1] \cdot f[0] + b[1] + 3 \\
&= k[n - (n - 1)] \cdot f[0] + b[n - (n - 1)] + 3 \\
&= \cfrac{n - 1}{n} f[0] + \cfrac{3(n - 1)}{2} + 3 \\
\Rightarrow f[0] &= \cfrac{3}{2}n^2 + \cfrac{3}{2}n
\end{aligned}
\]
当 \(n = 0,1,\ldots\) 时,\(f[0]\) 即答案为:
\[0, 3, 9, 18, 30, 45, 63, 84, 108, 135, 165, 198, 234, 273, 315, 360, 408, 459, 513, 570, \ldots
\]
发现易证明均为整数。