POJ3416(Oulipo)

Oulipo
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 2946 Accepted: 1051

Description

The French author Georges Perec (1936–1982) once wrote a book, La disparition, without the letter 'e'. He was a member of the Oulipo group. A quote from the book:

Tout avait Pair normal, mais tout s’affirmait faux. Tout avait Fair normal, d’abord, puis surgissait l’inhumain, l’affolant. Il aurait voulu savoir où s’articulait l’association qui l’unissait au roman : stir son tapis, assaillant à tout instant son imagination, l’intuition d’un tabou, la vision d’un mal obscur, d’un quoi vacant, d’un non-dit : la vision, l’avision d’un oubli commandant tout, où s’abolissait la raison : tout avait l’air normal mais…

Perec would probably have scored high (or rather, low) in the following contest. People are asked to write a perhaps even meaningful text on some subject with as few occurrences of a given “word” as possible. Our task is to provide the jury with a program that counts these occurrences, in order to obtain a ranking of the competitors. These competitors often write very long texts with nonsense meaning; a sequence of 500,000 consecutive 'T's is not unusual. And they never use spaces.

So we want to quickly find out how often a word, i.e., a given string, occurs in a text. More formally: given the alphabet {'A', 'B', 'C', …, 'Z'} and two finite strings over that alphabet, a word W and a text T, count the number of occurrences of W in T. All the consecutive characters of W must exactly match consecutive characters of T. Occurrences may overlap.

Input

The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:

  • One line with the word W, a string over {'A', 'B', 'C', …, 'Z'}, with 1 ≤ |W| ≤ 10,000 (here |W| denotes the length of the string W).
  • One line with the text T, a string over {'A', 'B', 'C', …, 'Z'}, with |W| ≤ |T| ≤ 1,000,000.

Output

For every test case in the input file, the output should contain a single number, on a single line: the number of occurrences of the word W in the text T.

Sample Input

3
BAPC
BAPC
AZA
AZAZAZA
VERDI
AVERDXIVYERDIAN

Sample Output

1
3
0
/*
    POJ3461(Oulipo)
    Accepted 5108K 141MS C++ 901B 2009-05-10 09:48:46 
        by Xredman
*/

#include 
<iostream>
#include 
<cstring>
using namespace std;

const int N = 10004;
const int M = 1000005;

char S[N],//主串    
     T[M];//模式串
int Slen, Tlen;//主串和模式串的长度
int next[M];

void get_next()
{
    
int j, k;

    j 
= 0; k = -1; next[0= -1;

    
while(j < Tlen)
        
if(k == -1 || T[j] == T[k])
        
{
            next[
++j] = ++k;
        }

        
else
            k 
= next[k];

}

int KMP_Count()
{//此函数用于计算模式串在主串中出现的次数,可以交叉
    int ans = 0;
    
int i, j = 0;
    Slen 
= strlen(S);
    Tlen 
= strlen(T);
    
if(Slen == 1 && Tlen == 1)
    
{
        
if(S[0== T[0])
            
return 1;
        
else
            
return 0;
    }

    get_next();

    
for(i = 0; i < Tlen; i++)
    
{
        
while(j > 0 && S[j] != T[i])
            j 
= next[j];
        
if(S[j] == T[i])
            j
++;
        
if(j == Slen)
        
{
            ans
++;
            j 
= next[j];
        }

    }

    
return ans;
}

/*
int KMP_Index()
{//此函数用于返回模式串在主串中第一次出现的位置
 //不存在返回-1
    int i, j;
    i = j = 0;

    Slen = strlen(S); Tlen = strlen(T);
    get_next();

    while(i < Slen && j < Tlen)
        if(j == -1 || S[i] == T[j])
        {
            i++; j++;
        }
        else
            j = next[j];

    if(j == Tlen)
        return i - Tlen;
    else
        return -1;

}
*/


int main()
{
    
int n;
    scanf(
"%d"&n);
    getchar();
    
while(n--)
    
{
        scanf(
"%s%s", S, T);//输入主串和模式串
        printf("%d\n", KMP_Count());
    }

    
return 0;
}

posted on 2009-05-10 10:41  Xredman  阅读(273)  评论(0编辑  收藏  举报

导航