计算几何内部预定函数

 

计算几何内部预定函数

 

1.叉乘法求任意多边形面积

      语法:result=polygonarea(Point *polygon,int N);

      参数:

      *polygon:多变形顶点数组

      N:多边形顶点数目

      返回值:多边形面积

      注意:

       支持任意多边形,凹、凸皆可

       多边形顶点输入时按顺时针顺序排列

      源程序:

       typedef struct {

          double x,y;

      } Point;

      double polygonarea(Point *polygon,int N)

      {

          int i,j;

          double area = 0;

          for (i=0;i<N;i++) {

              j = (i + 1) % N;

              area += polygon[i].x * polygon[j].y;

              area -= polygon[i].y * polygon[j].x;

              }

          area /= 2;

          return(area < 0 ? -area : area);

      }

 

 

2.求三角形面积

      语法:result=area3(float x1,float y1,float x2,float y2,float x3,float y3);

      参数:

      x1~3:三角形3个顶点x坐标

      y1~3:三角形3个顶点y坐标

      返回值:三角形面积

      注意:

       需要 math.h

      源程序:

       float area3(float x1,float y1,float x2,float y2,float x3,float y3)

      {

          float a,b,c,p,s;

          a=sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));

          b=sqrt((x1-x3)*(x1-x3)+(y1-y3)*(y1-y3));

          c=sqrt((x3-x2)*(x3-x2)+(y3-y2)*(y3-y2));

          p=(a+b+c)/2;

          s=sqrt(p*(p-a)*(p-b)*(p-c));

          return s;

      }

 

 

3.两矢量间角度

      语法:result=angle(double x1, double y1, double x2, double y2);

      参数:

      x/y1~2:两矢量的坐标

      返回值:两的角度矢量

      注意:

       返回角度为弧度制,并且以逆时针方向为正方向

       需要 math.h

      源程序:

       #define PI 3.1415926

 

      double angle(double x1, double y1, double x2, double y2)

      {

          double dtheta,theta1,theta2;

          theta1 = atan2(y1,x1);

          theta2 = atan2(y2,x2);

          dtheta = theta2 - theta1;

          while (dtheta > PI)

              dtheta -= PI*2;

          while (dtheta < -PI)

              dtheta += PI*2;

          return(dtheta);

      }

 

 

4.两点距离(2D、3D)

      语法:result=distance_2d(float x1,float x2,float y1,float y2);

      参数:

      x/y/z1~2:各点的x、y、z坐标

      返回值:两点之间的距离

      注意:

       需要 math.h

      源程序:

       float distance_2d(float x1,float x2,float y1,float y2)

      {

          return(sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2)));

      }

 

 

      float distance_3d(float x1,float x2,float y1,float y2,float z1,float z2)

      {

          return(sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2)+(z1-z2)*(z1-z2)));

      }

 

 

5.射向法判断点是否在多边形内部

      语法:result=insidepolygon(Point *polygon,int N,Point p);

      参数:

      *polygon:多边形顶点数组

      N:多边形顶点个数

      p:被判断点

      返回值:0:点在多边形内部;1:点在多边形外部

      注意:

       若p点在多边形顶点或者边上,返回值不确定,需另行判断

       需要 math.h

      源程序:

       #define MIN(x,y) (x < y ? x : y)

      #define MAX(x,y) (x > y ? x : y)

      typedef struct {

          double x,y;

      } Point;

      int insidepolygon(Point *polygon,int N,Point p)

      {

          int counter = 0;

          int i;

          double xinters;

          Point p1,p2;

          p1 = polygon[0];

          for (i=1;i<=N;i++) {

              p2 = polygon[i % N];

              if (p.y > MIN(p1.y,p2.y)) {

                  if (p.y <= MAX(p1.y,p2.y)) {

                      if (p.x <= MAX(p1.x,p2.x)) {

                          if (p1.y != p2.y) {

                              xinters = (p.y-p1.y)*(p2.x-p1.x)/(p2.y-p1.y)+p1.x;

                              if (p1.x == p2.x || p.x <= xinters)

                                  counter++;

                              }

                          }

                      }

                  }

                  p1 = p2;

              }

          if (counter % 2 == 0)

              return(OUTSIDE);

          else

              return(INSIDE);

      }

 

 

6.判断点是否在线段上

      语法:result=Pointonline(Point p1,Point p2,Point p);

      参数:

      p1、p2:线段的两个端点

      p:被判断点

      返回值:0:点在不在线段上;1:点在线段上

      注意:

       若p线段端点上返回1

       需要 math.h

      源程序:

       #define MIN(x,y) (x < y ? x : y)

      #define MAX(x,y) (x > y ? x : y)

      typedef struct {

      double x,y;

      } Point;

      int FC(double x1,double x2)

      {

          if (x1-x2<0.000002&&x1-x2>-0.000002) return 1; else return 0;

      }

 

 

      int Pointonline(Point p1,Point p2,Point p)

      {

          double x1,y1,x2,y2;

          x1=p.x-p1.x;

          x2=p2.x-p1.x;

          y1=p.y-p1.y;

          y2=p2.y-p1.y;

          if (FC(x1*y2-x2*y1,0)==0) return 0;

          if ((MIN(p1.x,p2.x)<=p.x&&p.x<=MAX(p1.x,p2.x))&&

                  (MIN(p1.y,p2.y)<=p.y&&p.y<=MAX(p1.y,p2.y)))

              return 1; else return 0;

      }

 

 

7.判断两线段是否相交

      语法:result=lineintersect(Point p1,Point p2,Point p3,Point p4);

      参数:

      p1~4:两条线段的四个端点

      返回值:0:两线段不相交;1:两线段相交;2两线段首尾相接

      注意:

       p1!=p2;p3!=p4;

      源程序:

       #define MIN(x,y) (x < y ? x : y)

      #define MAX(x,y) (x > y ? x : y)

      typedef struct {

          double x,y;

      } Point;

      int lineintersect(Point p1,Point p2,Point p3,Point p4)

      {

          Point tp1,tp2,tp3;

          if

      ((p1.x==p3.x&&p1.y==p3.y)||(p1.x==p4.x&&p1.y==p4.y)||(p2.x==p3.x&&p2.y==p3.y)||(p2.x==p4.x&&p2.y==p4.y))

              return 2;

      //快速排斥试验

          if

      ((MIN(p1.x,p2.x)<=p3.x&&p3.x<=MAX(p1.x,p2.x)&&MIN(p1.y,p2.y)<=p3.y&&p3.y<=MAX(p1.y,p2.y))||

                 

      (MIN(p1.x,p2.x)<=p4.x&&p4.x<=MAX(p1.x,p2.x)&&MIN(p1.y,p2.y)<=p4.y&&p4.y<=MAX(p1.y,p2.y)))

              ;else return 0;

      //跨立试验

          tp1.x=p1.x-p3.x;

          tp1.y=p1.y-p3.y;

          tp2.x=p4.x-p3.x;

          tp2.y=p4.y-p3.y;

          tp3.x=p2.x-p3.x;

          tp3.y=p2.y-p3.y;

          if ((tp1.x*tp2.y-tp1.y*tp2.x)*(tp2.x*tp3.y-tp2.y*tp3.x)>=0) return 1;

      else return 0;

      }

 

 

8.判断线段与直线是否相交

      语法:result=lineintersect(Point p1,Point p2,Point p3,Point p4);

      参数:

      p1、p2:线段的两个端点

      p3、p4:直线上的两个点

      返回值:0:线段直线不相交;1:线段和直线相交

      注意:

       如线段在直线上,返回 1

      源程序:

       typedef struct {

          double x,y;

      } Point;

      int lineintersect(Point p1,Point p2,Point p3,Point p4)

      {

          Point tp1,tp2,tp3;

          tp1.x=p1.x-p3.x;

          tp1.y=p1.y-p3.y;

          tp2.x=p4.x-p3.x;

          tp2.y=p4.y-p3.y;

          tp3.x=p2.x-p3.x;

          tp3.y=p2.y-p3.y;

          if ((tp1.x*tp2.y-tp1.y*tp2.x)*(tp2.x*tp3.y-tp2.y*tp3.x)>=0) return 1;

      else return 0;

      }

 

 

9.点到线段最短距离

      语法:result=mindistance(Point p1,Point p2,Point q);

      参数:

      p1、p2:线段的两个端点

      q:判断点

      返回值:点q到线段p1p2的距离

      注意:

       需要 math.h

      源程序:

       #define MIN(x,y) (x < y ? x : y)

      #define MAX(x,y) (x > y ? x : y)

      typedef struct {

          double x,y;

      } Point;

      double mindistance(Point p1,Point p2,Point q)

      {

          int flag=1;

          double k;

          Point s;

          if (p1.x==p2.x) {s.x=p1.x;s.y=q.y;flag=0;}

          if (p1.y==p2.y) {s.x=q.x;s.y=p1.y;flag=0;}

          if (flag)

              {

              k=(p2.y-p1.y)/(p2.x-p1.x);

              s.x=(k*k*p1.x+k*(q.y-p1.y)+q.x)/(k*k+1);

              s.y=k*(s.x-p1.x)+p1.y;

              }

          if (MIN(p1.x,p2.x)<=s.x&&s.x<=MAX(p1.x,p2.x))

              return sqrt((q.x-s.x)*(q.x-s.x)+(q.y-s.y)*(q.y-s.y));

          else

              return

      MIN(sqrt((q.x-p1.x)*(q.x-p1.x)+(q.y-p1.y)*(q.y-p1.y)),sqrt((q.x-p2.x)*(q.x-p2.x)+(q.y-p2.y)*(q.y-p2.y)));

      }

 

 

10.求两直线的交点

      语法:result=mindistance(Point p1,Point p2,Point q);

      参数:

      p1~p4:直线上不相同的两点

      *p:通过指针返回结果

      返回值:1:两直线相交;2:两直线平行

      注意:

       如需要判断两线段交点,检验k和对应k1(注释中)的值是否在0~1之间,用在0~1之间的那个求交点

      源程序:

       typedef struct {

         double x,y;

      } Point;

      int linecorss(Point p1,Point p2,Point p3,Point p4,Point *p)

      {

         double k;

         if ((p4.y-p3.y)*(p2.x-p1.x)-(p4.x-p3.x)*(p2.y-p1.y)==0) return 0;

        if ((p4.x-p3.x)*(p1.y-p3.y)-(p4.y-p3.y)*(p1.x-p3.x)==0&&

                 (p2.x-p1.x)*(p1.y-p3.y)-(p2.y-p1.y)*(p1.x-p3.x)==0) return 0;

         

      k=((p4.x-p3.x)*(p1.y-p3.y)-(p4.y-p3.y)*(p1.x-p3.x))/((p4.y-p3.y)*(p2.x-p1.x)-(p4.x-p3.x)*(p2.y-p1.y));

      //k1=((p2.x-p1.x)*(p1.y-p3.y)-(p2.y-p1.y)*(p1.x-p3.x))/((p4.y-p3.y)*(p2.x-p1.x)-(p4.x-p3.x)*(p2.y-p1.y));

         (*p).x=p1.x+k*(p2.x-p1.x);

         (*p).y=p1.y+k*(p2.y-p1.y);

         return 1;

      }

 

 

11.判断一个封闭图形是凹集还是凸集

      语法:result=convex(Point *p,int n);

      参数:

      *p:封闭曲线顶点数组

      n:封闭曲线顶点个数

      返回值:1:凸集;-1:凹集;0:曲线不符合要求无法计算

      注意:

       默认曲线为简单曲线:无交叉、无圈

      源程序:

       typedef struct {

          double x,y;

      } Point;

      int convex(Point *p,int n)

      {

          int i,j,k;

          int flag = 0;

          double z;

          if (n < 3)

              return(0);

          for (i=0;i<n;i++) {

              j = (i + 1) % n;

              k = (i + 2) % n;

              z = (p[j].x - p[i].x) * (p[k].y - p[j].y);

              z -= (p[j].y - p[i].y) * (p[k].x - p[j].x);

              if (z < 0)

                  flag |= 1;

              else if (z > 0)

                  flag |= 2;

              if (flag == 3)

                  return -1; //CONCAVE 

             }

          if (flag != 0)

              return 1; //CONVEX

          else

          return 0;

      }

 

 

12.Graham扫描法寻找凸包

      语法:Graham_scan(Point PointSet[],Point ch[],int n,int &len);

      参数:

      PointSet[]:输入的点集

      ch[]:输出的凸包上的点集,按照逆时针方向排列

      n:PointSet中的点的数目

      len:输出的凸包上的点的个数

      返回值:null

      源程序:

       struct Point{

          float x,y;

      };

      float multiply(Point p1,Point p2,Point p0)

      {

          return((p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y));

      }

      float distance(Point p1,Point p2)

      {

          return(sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y)));

      }

      void Graham_scan(Point PointSet[],Point ch[],int n,int &len)

      {

          int i,j,k=0,top=2;

          Point tmp;

 

         for(i=1;i<n;i++)

          if

      ((PointSet[i].y<PointSet[k].y)||((PointSet[i].y==PointSet[k].y)&&(PointSet[i].x<PointSet[k].x)))

          k=i;

          tmp=PointSet[0];

          PointSet[0]=PointSet[k];

          PointSet[k]=tmp;

          for (i=1;i<n-1;i++)

              {

              k=i;

              for (j=i+1;j<n;j++)

                  if ( (multiply(PointSet[j],PointSet[k],PointSet[0])>0) ||

                           ((multiply(PointSet[j],PointSet[k],PointSet[0])==0)

                              

      &&(distance(PointSet[0],PointSet[j])<distance(PointSet[0],PointSet[k])))  

      )

                      k=j;

              tmp=PointSet[i];

              PointSet[i]=PointSet[k];

              PointSet[k]=tmp;

              }

          ch[0]=PointSet[0];

          ch[1]=PointSet[1];

          ch[2]=PointSet[2];

          for (i=3;i<n;i++)

              {

              while (multiply(PointSet[i],ch[top],ch[top-1])>=0) top--;

              ch[++top]=PointSet[i];

              }

          len=top+1;

      }

 

 

13.求两条线段的交点

      语法:Result=IntersectPoint (Point p1,Point p2,Point p3,Point p4,Point &p);

      参数:

      P1~P4:两条线断4个端点

      P:线段交点

      返回值:如果两条线段平行无交点,返回 0,否则返回 1

      源程序:

       struct Point{

          float x,y;

      };

 

      int IntersectPoint (Point p1,Point p2,Point p3,Point p4,Point &p)

      {

      float a,b,c,d,e,f;

      a=p2.y-p1.y;

      b=p1.x-p2.x;

      c=p1.y*(p2.x-p1.x)+p1.x*(p2.y-p1.y);

      d=p4.y-p3.y;

      e=p3.x-p4.x;

      f=p3.y*(p4.x-p3.x)+p1.x*(p4.y-p3.y);

      if (a*e==b*d)

          return 0;

      else

          {

          p.x=(e*c-b*f)/(b*d-a*e);

          p.y=(d*c-a*f)/(a*e-b*d);

          return 1;

          }

      }

posted on 2009-03-11 15:15  Xredman  阅读(289)  评论(0编辑  收藏  举报

导航