2038. Minimum Vertex Cover
Time limit: 1.0 second
Memory limit: 64 MB
Memory limit: 64 MB
A vertex cover of a graph is a set of vertices such that each edge of the graph is incident to at least one vertex of the set. A minimum vertex cover is a vertex cover with minimal cardinality.
Consider a set of all minimum vertex covers of a given bipartite graph. Your task is to divide all vertices of the graph into three sets. A vertex is in setN (“Never”) if there is no minimum vertex cover containing this vertex. A vertex is in set A (“Always”) if it is a part of every minimum vertex cover of the given graph. If a vertex belongs neither to N nor to A, it goes to the set E (“Exists”).
Input
The first line of input contains three integers n, m, k: the size of the first vertex set of the bipartite graph, the size of the second vertex set and the number of edges (1 ≤ n, m ≤ 1000; 0 ≤ k ≤ 106). Next k lines contain pairs of numbers of vertices, connected by an edge. First number denotes a vertex from the first set, second — from the second set. Vertices in each set are numbered starting from one. No pair of vertices is connected by more than one edge.
Output
On the first line, print a sequence of n letters ‘N’, ‘E’, ‘A’ without spaces. The letter on position i corresponds to the set containing i-th vertex of the first set. The second line must contain the answer for the second vertex set in the same format.
Sample
input | output |
---|---|
11 9 22 1 1 1 2 1 3 1 8 1 9 2 1 2 3 3 2 3 4 4 3 4 5 5 2 5 4 5 6 6 6 6 7 7 5 7 7 8 7 9 7 10 7 11 7 |
AEEEEEENNNN EEEEEEANN |
题解:
看了网上 http://blog.csdn.net/u011699990/article/details/45257071 的题解才会的
关键就是确定这个点是否在最小点覆盖的条件是 : 如果这个点是一个已盖点,从他相连的所有点中只要存在一个是未盖点,那么这个点一定是在最小点覆盖上的(这个结论很神奇,也很容易想通)
那么一旦确定了某个点是最小点覆盖上的点之后,他所对应的另外一个匹配点就一定不会在最小点覆盖了,如此循环,我们就能最终确定哪些点是一定在最小点覆盖上了,可以看看代码理解,代码写了注释
#include <bits/stdc++.h> #define rep(a,b,c) for(int (a)=(b);(a)<=(c);++(a)) #define drep(a,b,c) for(int (a)=(b);(a)>=(c);--(a)) #define pb push_back #define mp make_pair #define sf scanf #define pf printf #define two(x) (1<<(x)) #define clr(x,y) memset((x),(y),sizeof((x))) #define dbg(x) cout << #x << "=" << x << endl; #define lowbit(x) ((x)&(-x)) const int mod = 1e9 + 7; int mul(int x,int y){return 1LL*x*y%mod;} int qpow(int x , int y){int res=1;while(y){if(y&1) res=mul(res,x) ; y>>=1 ; x=mul(x,x);} return res;} inline int read(){int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}return x*f;} using namespace std; const int maxn = 1e3 + 15; vector < int > LE[maxn] , RE[maxn] ; int linkL[maxn],linkR[maxn],N,M,K,ansL[maxn],ansR[maxn],vis[maxn]; int DFS( int x ){ for( auto v : LE[x] ){ if( vis[v] ) continue; vis[v] = 1; if( linkR[v] == -1 || DFS( linkR[v] ) ){ linkL[x] = v , linkR[v] = x; return 1; } } return 0; } int main( int argc , char * argv[] ){ N=read(),M=read(),K=read(); rep(i,1,K){ int u = read() , v = read(); LE[u].pb( v ); RE[v].pb( u ); } clr( linkL , -1 ) ; clr( linkR , -1 ); // 进行二分图最大匹配 rep(i,1,N){ rep(j,1,M) vis[j]=0; DFS( i ); } // 初始认为所有匹配的点都是 E , 对于未匹配点,加入队列中 queue < int > Q; rep(i,1,N) if(~linkL[i]) ansL[i] = 1; else Q.push( i ); rep(i,1,M) if(~linkR[i]) ansR[i] = 1; else Q.push( i + N ); // 对于一定在最小点覆盖的点满足的条件即 : 这个匹配点连接的所有边中存在非匹配点 , 即,如果存在的话,就必须选这个点 // 开始跑 // 注意队列中的点都是未匹配点 while(!Q.empty()){ int x = Q.front() ; Q.pop(); // 是左边的点 if( x <= N ){ for( auto v : LE[x] ){ // 右边的点是一个匹配点同时没有check过 if( ~linkR[v] && ansR[v] != 2 ){ ansR[v] = 2; // 这个点必选 ansL[linkR[v]] = 0; // 那么他所对应的左边的匹配点一定不选 Q.push( linkR[v] ); // 左边那个点不选了,加入到队列中 } } }else{ for( auto v : RE[x - N] ){ // 左边的点是一个匹配点同时没有check过 if( ~linkL[v] && ansL[v] != 2 ){ ansL[v] = 2; // 这个点必选 ansR[linkL[v]] = 0; // 那么他所对应的右边的匹配点一定不选 Q.push( linkL[v] + N ); // 左边那个点不选了,加入到队列中 } } } } rep(i,1,N) if(ansL[i] == 0) putchar('N') ; else if( ansL[i] == 1 ) putchar('E') ; else putchar('A'); puts(""); rep(i,1,M) if(ansR[i] == 0) putchar('N') ; else if( ansR[i] == 1 ) putchar('E') ; else putchar('A'); puts(""); return 0; }
No Pain , No Gain.