Dreamoon has a string s and a pattern string p. He first removes exactly x characters from s obtaining string s' as a result. Then he calculates that is defined as the maximal number of non-overlapping substrings equal to p that can be found in s'. He wants to make this number as big as possible.
More formally, let's define as maximum value of over all s' that can be obtained by removing exactly x characters froms. Dreamoon wants to know for all x from 0 to |s| where |s| denotes the length of string s.
The first line of the input contains the string s (1 ≤ |s| ≤ 2 000).
The second line of the input contains the string p (1 ≤ |p| ≤ 500).
Both strings will only consist of lower case English letters.
Print |s| + 1 space-separated integers in a single line representing the for all x from 0 to |s|.
aaaaa
aa
2 2 1 1 0 0
axbaxxb
ab
0 1 1 2 1 1 0 0
For the first sample, the corresponding optimal values of s' after removal 0 through |s| = 5 characters from s are {"aaaaa", "aaaa","aaa", "aa", "a", ""}.
For the second sample, possible corresponding optimal values of s' are {"axbaxxb", "abaxxb", "axbab", "abab", "aba", "ab","a", ""}.
题解报告:
几天后补上
#include <iostream> #include <cstring> #include <cstdio> #include <algorithm> #include <cmath> #include <vector> #include <stack> #include <map> #include <set> #include <queue> #include <iomanip> #include <string> #include <ctime> #include <list> #include <bitset> typedef unsigned char byte; #define pb push_back #define input_fast std::ios::sync_with_stdio(false);std::cin.tie(0) #define local freopen("in.txt","r",stdin) #define pi acos(-1) using namespace std; const int maxn = 2e3 + 50; char s[maxn],p[maxn]; int errorcode,ans[maxn]; inline void updata(int & x ,int v){x=min(x,v);} int main(int argc,char *argv[]) { scanf("%s%s",s+1,p+1); int l1 = strlen(s+1),l2=strlen(p+1); int dp[l1+3][l2+3][l1/l2+2],shang=l1/l2+1; memset(dp,0x3f,sizeof(dp));errorcode=dp[0][0][0];dp[0][0][0]=0;memset(ans,0,sizeof(ans)); for(int i = 0 ; i < l1 ; ++ i) for(int j = 0 ; j < l2 ; ++ j) for(int k = 0 ; k <= shang ; ++ k) if(dp[i][j][k]!=errorcode) { if(j==0) updata(dp[i+1][j][k],dp[i][j][k]); else updata(dp[i+1][j][k],dp[i][j][k]+1); if(s[i+1]==p[j+1]) { if(j==l2-1) updata(dp[i+1][0][k+1],dp[i][j][k]); else updata(dp[i+1][j+1][k],dp[i][j][k]); } else { updata(dp[i+1][0][k],dp[i][j][k]); } } for(int j = 0 ; j <= l2 ; ++ j) for(int k = 0 ; k <= shang ; ++ k) if(dp[l1][j][k] != errorcode) { int v = dp[l1][j][k]; ans[v] = max(ans[v],k); } for(int i = 0 ; i <= l1 ; ++ i) if(ans[i]) { for(int j = i + 1 ; j <= l1 ; ++ j) ans[j]=max(ans[j],min((l1-j)/l2,ans[i])); } printf("%d",ans[0]); for(int i = 1 ; i <= l1 ; ++ i) printf(" %d",ans[i]);printf("\n"); return 0; }