【模板整合计划】数论数学—数论

【模板整合计划】数论数学—数论

一:【质数】

1.【暴力判】

【模板】素数、コンテスト、素数 \(\text{[AT807]}\)

#include<cstdio>
#include<cmath>
int x;
inline bool judge(int n){
    if(n<4)return 1;
    if(n%2==0)return 0;
    int half=sqrt(n);
    for(int i=3;i<=half;i+=2)
        if(n%i==0)return 0;
    return 1;
}
int main(){
    scanf("%d",&x);
    puts(judge(x)?"YES":"NO");
}

2.【Miller Rabin】

【模板】质数判定 \(\text{[Loj143]}\)

#include<cstdio>
#define LL long long
#define Re register LL
LL n,prime[10]={2,3,5,7,11,13,17,19,23,29};
inline LL cf(Re x,Re k,Re P){
    Re s=0;
    while(k){
        if(k&1)(s+=x)%=P;
        (x<<=1)%=P,k>>=1;
    }
    return s%P;
}
inline LL mi(Re x,Re k,Re P){
    Re s=1;
    while(k){
        if(k&1)s=cf(s,x,P)%P;
        x=cf(x,x,P)%P,k>>=1;
    }
    return s%P;
}
inline bool Miller_Rabin(Re x){
    Re s=0,t=x-1;
    if(x==2)return 1;
    if(x<2||!(x&1))return 0;
    while(!(t&1))s++,t>>=1;
    for(Re i=0;i<10&&prime[i]<x;++i){
        Re a=prime[i],b=mi(a,t,x);
        for(Re j=1,k;j<=s;++j){
            k=cf(b,b,x);
            if(k==1&&b!=1&&b!=x-1)return 0;
            b=k;
        }
        if(b!=1)return 0;
    }
    return 1;
}
int main(){
    while(scanf("%lld",&n)!=EOF)puts(Miller_Rabin(n)?"Y":"N");
}

【模板】\(\text{PON - Prime or Not [SP288]}\)

3.【埃氏筛】

【模板】线性筛素数 \(\text{[P3383]}\)

#include<algorithm>
#include<cstdio>
#define Re register int
using namespace std;
const int N=1e7+3;
int n,x,T,cnt,pri[N/3];bool pan[N];
inline void in(Re &x){
    int f=0;x=0;char c=getchar();
    while(c<'0'||c>'9')f|=c=='-',c=getchar();
    while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+(c^48),c=getchar();
    x=f?-x:x;
}
inline void get_pri(Re N){
    pan[0]=pan[1]=1;
    for(Re i=2;i<=N;i++)
        if(!pan[i]){
            pri[++cnt]=i;
            for(Re j=i;j<=N/i;j++)pan[i*j]=1;
        }
}
int main(){
    in(n),in(T),get_pri(n);
    while(T--)in(x),puts(pan[x]?"No":"Yes");
}

4.【欧拉筛】

【模板】线性筛素数 \(\text{[P3383]}\)

#include<cstdio>
#include<ctime>
const int N=1e6;
int cnt,i,j,pri[N/3];bool pan[N+1];
inline void get_pri(){
    pan[0]=pan[1]=1;
    for(i=2;i<=N;++i){
        if(!pan[i])pri[++cnt]=i;
        for(j=1;j<=cnt&&i*pri[j]<=N;++j){
            pan[i*pri[j]]=1;
            if(i%pri[j]==0)break;
        }
    }
}
int main(){
    get_pri();
    for(j=0,i=1;i<=cnt;++i)printf("%d ",pri[i]);
}

二:【约数】

1.【欧几里得 (gcd)】

#include<algorithm>
#include<cstdio>
int a,b;
inline int gcd(Re a,Re b){return (!b)?a:(a%b==0?b:gcd(b,a%b));}
//来自某大佬无比魔性的诡异写法(至今未看懂):
inline int GCD(int a,int b){while(b^=a^=b^=a%=b);return a;}
int main(){
    while(scanf("%d%d",&a,&b))
    printf("%d\n",gcd(a,b));
}

2.【欧拉函数(埃氏筛)】

【模板】\(\text{ETF - Euler Totient Function}\) \(\text{[SP4141]}\)

#include<cstdio>
const int N=1e6+10;
int cnt,n=N-10,phi[N],pan[N],pri[N/3];
inline void get_phi(){
    pan[0]=pan[1]=1,phi[1]=1;
    for(int i=2;i<=n;i++)if(!phi[i]){
        for(int j=i;j<=n;j+=i){
            if(!phi[j])phi[j]=j;
            phi[j]=phi[j]/i*(i-1);
        }
    }
}
int main(){
    get_phi();
    for(int i=1;i<=n;++i)printf("%d: %d\n",i,phi[i]);
}

3.【欧拉函数(欧拉筛)】

【模板】\(\text{ETF - Euler Totient Function}\) \(\text{[SP4141]}\)

#include<cstdio>
const int N=1e6;
int cnt,i,j,pan[N+1],pri[N/3],phi[N+1];
inline void get_phi(){
    pan[0]=pan[1]=1,phi[1]=1;
    for(i=2;i<=N;++i){
        if(!pan[i])pri[++cnt]=i,phi[i]=i-1;
        for(j=1;j<=cnt&&i*pri[j]<=N;++j){
            pan[i*pri[j]]=1;
            if(i%pri[j])phi[i*pri[j]]=phi[i]*(pri[j]-1);
            else{phi[i*pri[j]]=phi[i]*pri[j];break;}
        }
    }
}
int main(){
    get_phi();
    for(i=1;i<=N;++i)printf("%d: %d\n",i,phi[i]);
}

三:【同余】

1.【逆元】

【模板】乘法逆元 \(\text{[P3811]}\)

(1).【递推】

#include<cstdio>
#define LL long long
#define Re register int
const int N=3e6+3;
int n,P,inv[N];
int main(){
    // freopen("123.txt","r",stdin);
    scanf("%d%d",&n,&P);
    inv[1]=1;
    for(Re i=2;i<=n;++i)inv[i]=(LL)(P-P/i)*inv[P%i]%P;
    for(Re i=1;i<=n;++i)printf("%d\n",inv[i]);
}

(2).【快速幂】

这道题卡快速幂,会 \(\text{TLE}\) 两个点。。。。

#include<cstdio>
#define LL long long
#define Re register int
int n,P;
inline int inv(Re x,Re P){
    Re s=1,k=P-2;
    while(k){
        if(k&1)s=(LL)s*x%P;
        x=(LL)x*x%P,k>>=1;
    }
    return s%P;
}
int main(){
    scanf("%d%d",&n,&P);
    for(Re i=1;i<=n;++i)printf("%d\n",inv(i,P));
}

3.【扩展欧拉定理】

【模板】扩展欧拉定理(\(a^b \mod m\)\([U55950]\)

#include<cstdio>
#include<cctype>
#define LL long long
#define Re register LL
LL i,a,b,m,x,s,phi,flag;char c;
inline LL cf(Re x,Re k){
    Re s=0;
    while(k){
        if(k&1)(s+=x)%=m;
        (x<<=1)%=m,k>>=1;
    }
    return s;
}
int main(){
    scanf("%lld%lld",&a,&m);phi=x=m;
    for(i=2;i*i<=m;++i)
        if(!(x%i)){phi-=phi/i;while(!(x%i))x/=i;}
    if(x>1)phi-=phi/x;
    while(!isdigit(c=getchar()));
    while(isdigit(c))flag|=((b=(b<<1)+(b<<3)+(c^48))>=phi),b%=phi,c=getchar();
    b+=flag?phi:0;x=1;
    while(b){if(b&1)x=cf(x,a)%m;a=cf(a,a)%m,b>>=1;}
    printf("%lld",x);
}

4.【扩展欧几里得 (Exgcd)】

【模板】同余方程 \(\text{[P1082]}\)

#include<cstdio>
#define Re register int
int a,b,x,y;
inline void exgcd(Re a,Re b,Re &x,Re &y){
    if(!b){x=1,y=0;return;}
    exgcd(b,a%b,x,y);Re x0=x,y0=y;
    x=y0,y=x0-a/b*y0;return;
}
int main(){
    scanf("%d%d",&a,&b),exgcd(a,b,x,y);
    printf("%d\n",(x%b+b)%b);
}

5.【中国剩余定理 (CRT)】

【模板】猜数字 \(\text{[TJOI2009] [P3868]}\)

#include<cstdio>
#define LL long long
#define Re register LL
const int N=13;
LL n,ans,lcm=1,a[N],m[N];
inline void in(Re &x){
    int f=0;x=0;char c=getchar();
    while(c<'0'||c>'9')f|=c=='-',c=getchar();
    while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+(c^48),c=getchar();
    x=f?-x:x;
}
inline void exgcd(Re a,Re b,Re &x,Re &y){
    if(!b){x=1,y=0;return;}
    exgcd(b,a%b,x,y);Re x0=x,y0=y;
    x=y0,y=x0-a/b*y0;return;
}
inline LL cf(Re x,Re k,Re P){
    Re s=0;
    while(k){
        if(k&1)(s+=x)%=P;
        (x+=x)%=P,k>>=1;
    }
    return s;
}
int main(){
//    freopen("123.txt","r",stdin);
    in(n);
    for(Re i=1;i<=n;++i)in(m[i]),in(a[i]),lcm*=m[i];
    for(Re i=1;i<=n;++i){
        Re x,y,M=lcm/m[i];exgcd(M,m[i],x,y);//M[i]*inv+m[i]*y=1
        x=(x%m[i]+m[i])%m[i],(ans+=cf(cf(a[i],M,lcm),x,lcm))%=lcm;
    }
    printf("%lld\n",ans);
}

6.【扩展中国剩余定理 (EXCRT)】

【模板】扩展中国剩余定理(\(\text{EXCRT}\)\(\text{[P4777]}\)

#include<cstdio>
#define LL long long
#define Re register LL
const int N=1e5+3;
LL n,ans,lcm=1,a[N],m[N];
inline void in(Re &x){
    int f=0;x=0;char c=getchar();
    while(c<'0'||c>'9')f|=c=='-',c=getchar();
    while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+(c^48),c=getchar();
    x=f?-x:x;
}
inline LL exgcd(Re a,Re b,Re &x,Re &y){
    if(!b){x=1,y=0;return a;}
    Re gcd=exgcd(b,a%b,x,y);Re x0=x,y0=y;
    x=y0,y=x0-a/b*y0;return gcd;
}
inline LL cf(Re x,Re k,Re P){
    Re s=0;
    while(k){
        if(k&1)(s+=x)%=P;
        (x+=x)%=P,k>>=1;
    }
    return s;
}
int main(){
//    freopen("123.txt","r",stdin);
    in(n);
    for(Re i=1;i<=n;++i)in(m[i]),in(a[i]),lcm*=m[i];
    ans=a[1]%m[1],lcm=m[1];
    for(Re i=2;i<=n;++i){//ans+lcm*k=a[i](mod m[i]) -> lcm*k=a[i]-ans(mod m[i]) -> lcm*k+m[i]*y=a[i]-ans
        Re c=((a[i]-ans)%m[i]+m[i])%m[i],x,y;
        Re gcd=exgcd(lcm,m[i],x,y);
        Re k=cf(x,c/gcd,m[i]/gcd);
        ans+=lcm*k,lcm*=m[i]/gcd,ans=(ans%lcm+lcm)%lcm;
    }
    printf("%lld\n",ans);
}

7.【拔山盖世 / 大步小步 / BSGS (Baby Steps Giant Steps)】

【模板】\(\text{BSGS}\) / 可爱的质数 \(\text{[TJOI2007] [P3846]}\)

#include<algorithm>
#include<cstdio>
#include<cmath>
#include<map>
#define LL long long
#define Re register int
using namespace std;
const int N=1e5+3;
int x,y,m,P;map<int,int>B;
inline void in(Re &x){
    int f=0;x=0;char c=getchar();
    while(c<'0'||c>'9')f|=c=='-',c=getchar();
    while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+(c^48),c=getchar();
    x=f?-x:x;
}
//x^k = y (mod P)
//k = am-b (m=sqrt(P)+1, a\in[1,m], b\in[0,m-1])
//(x^m)^a = y x^b (mod P)
inline int mi(Re x,Re k){
    Re s=1;
    while(k){
        if(k&1)s=(LL)s*x%P;
        x=(LL)x*x%P,k>>=1;
    }
    return s;
}
int main(){
//    freopen("123.txt","r",stdin);
    in(P),in(x),in(y),m=sqrt(P)+1;
    if(y==1)return !puts("0");
    for(Re b=0,s=y;b<m;++b)B[s]=b,s=(LL)s*x%P;
    Re tmp=mi(x,m);
    for(Re a=1,s=1;a<=m;++a){
        s=(LL)s*tmp%P;
        if(B.find(s)!=B.end()){printf("%d\n",a*m-B[s]);return 0;}
    }
    puts("no solution");
}

8.【扩展 BSGS (EXBSGS)】

【模板】扩展 \(\text{BSGS [P4195]}\)

#include<algorithm>
#include<cstdio>
#include<cmath>
#include<map>
#define LL long long
#define Re register int
using namespace std;
int x,y,z;map<int,int>B;
inline void in(Re &x){
    int f=0;x=0;char c=getchar();
    while(c<'0'||c>'9')f|=c=='-',c=getchar();
    while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+(c^48),c=getchar();
    x=f?-x:x;
}
inline int mi(Re x,Re k,Re P){
    Re s=1;
    while(k){
        if(k&1)s=(LL)s*x%P;
        x=(LL)x*x%P,k>>=1;
    }
    return s;
}
inline int gcd(Re a,Re b){return !b?a:gcd(b,a%b);}
inline void exBSGS(Re x,Re y,Re P){
    if(y==1){puts("0");return;}
    Re d=gcd(x,P),tmp=1,t=0;
    while(d!=1){
        if(y%d){puts("No Solution");return;}
        ++t,y/=d,P/=d,tmp=(LL)tmp*(x/d)%P;
        if(y==tmp){printf("%d\n",t);return;}
        d=gcd(x,P);
    }
    Re m=sqrt(P)+1;B.clear();
    for(Re b=0,s=y;b<m;++b)B[s]=b,s=(LL)s*x%P;
    Re s=tmp;tmp=mi(x,m,P);
    for(Re a=1;a<=m;++a){
        s=(LL)s*tmp%P;
        if(B.find(s)!=B.end()){printf("%d\n",a*m-B[s]+t);return;}
    }
    puts("No Solution");
}
int main(){
//    freopen("123.txt","r",stdin);
    while(1){
        in(x),in(y),in(z);
        if(!x&&!y&&!z)break;
        exBSGS(x,z,y);
    }
}

9.【二次剩余】

【模板】二次剩余 \(\text{[P5491]}\)

#include<algorithm>
#include<cstring>
#include<cstdio>
#define LL long long
#define Re register int
using namespace std;
int n,T,P,W,det;
inline void in(Re &x){
    int f=0;x=0;char c=getchar();
    while(c<'0'||c>'9')f|=c=='-',c=getchar();
    while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+(c^48),c=getchar();
    x=f?-x:x;
}
inline int mi(Re x,Re k){
    Re s=1;
    while(k){
        if(k&1)s=(LL)s*x%P;
        x=(LL)x*x%P,k>>=1;
    }
    return s;
}
struct CP{
    int x,y;CP(Re X=0,Re Y=0){x=X,y=Y;}
    inline CP operator*(const CP &O)const{return CP(((LL)x*O.x%P+(LL)y*O.y%P*W%P)%P,((LL)x*O.y%P+(LL)y*O.x%P)%P);}
    inline CP operator*=(const CP &O){return *this=*this*O;}
};
inline CP mi_(CP x,Re k){
    CP s=CP(1,0);
    while(k){
        if(k&1)s*=x;
        x*=x,k>>=1;
    }
    return s;
}
inline LL Sqrt(Re n){
    if(!n)return 0;Re x;
    while(1){
        x=rand()%P,W=((LL)x*x%P-n+P)%P;
        if(mi(W,(P-1)/2)==P-1)break;
    }
    return mi_(CP(x,1),(P+1)/2).x;
}
int main(){
//    freopen("123.txt","r",stdin);
    in(T);
    while(T--){
        in(n),in(P);
        if(mi(n,(P-1)/2)==P-1)puts("Hola!");//无解
        else{
            det=Sqrt(n);
            if(det)printf("%d %d\n",min(det,P-det),max(det,P-det));//两解
            else printf("%d\n",det);//单解
        }
    }
}

10.【N 次剩余】

【模板】\(\text{N}\) 次剩余 \(\text{[P5668]}\)

还不会,先咕着。

四:【类欧几里得算法】

【模板】类欧几里得算法 \(\text{[P5170]}\)

还不会,先咕着。


五:【各类反演及数论筛法】

1.【莫比乌斯函数(Mobius)】

(1).【埃氏筛】

#include<cstdio>
const int N=1e7+3;
int i,j,n,cnt,pan[N],miu[N];
inline void get_miu(){
    for(i=1;i<=n;++i)miu[i]=1;
    for(i=2;i<=n;++i)
        if(!pan[i]){
            miu[i]=-1;
            for(j=i<<1;j<=n;j+=i)pan[j]=1,miu[j]*=(j/i%i==0)?0:-1;
        }
}
int main(){
    n=N;
    get_miu();
    for(i=1;i<=n;++i)printf("%d: %d\n",i,miu[i]);
}

(2).【线性筛】

#include<cstdio>
const int N=1e7+3;
int i,j,n,cnt,pri[N>>1],pan[N],miu[N];
inline void get_miu(){
    pan[1]=1,miu[1]=1;
    for(i=2;i<=n;++i){
        if(!pan[i])pri[++cnt]=i,miu[i]=-1;
        for(j=1;j<=cnt&&i*pri[j]<=n;++j){
            pan[i*pri[j]]=1;
            if(i%pri[j])miu[i*pri[j]]=-miu[i];
            else{miu[i*pri[j]]=0;break;}
        }
    }
}
int main(){
    n=N;
    get_miu();
    for(i=1;i<=n;++i)printf("%d: %d\n",i,miu[i]);
}

2.【杜教筛】

(1).【map 记忆化】

【模板】 杜教筛(\(\text{Sum}\)\(\text{[P4213]}\)

#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Re register int
#define LL long long
using namespace std;
const int N23=1664511+3,N=2147483647;
int x,T,cnt,pan[N23],pri[N23],phi[N23],miu[N23];
int TO,Smiu[N23];LL Sphi[N23];
map<int,int>Smiu_;map<int,LL>Sphi_;
inline void in(Re &x){
    Re fu=0;x=0;char ch=getchar();
    while(ch<'0'||ch>'9')fu|=ch=='-',ch=getchar();
    while(ch>='0'&&ch<='9')x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
    x=fu?-x:x;
}
inline void get_(Re N){
    miu[1]=phi[1]=pan[1]=1;
    for(Re i=2;i<=N;++i){
        if(!pan[i])pri[++cnt]=i,miu[i]=-1,phi[i]=i-1;
        for(Re j=1;j<=cnt&&pri[j]<=N/i;++j){
            pan[i*pri[j]]=1;
            if(i%pri[j])miu[i*pri[j]]=-miu[i],phi[i*pri[j]]=phi[i]*phi[pri[j]];
            else{miu[i*pri[j]]=0,phi[i*pri[j]]=phi[i]*pri[j];break;}
        }
    }
    for(Re i=1;i<=N;++i)Smiu[i]=Smiu[i-1]+miu[i],Sphi[i]=Sphi[i-1]+phi[i];
}
inline LL get_Sphi(Re n){
    if(n<=TO)return Sphi[n];
    if(Sphi_[n])return Sphi_[n];
    LL ans=(LL)n*(n+1)>>1;
    for(Re l=2,r;l<=n;l=r+1){
        r=n/(n/l);
        ans-=(LL)(r-l+1)*get_Sphi(n/l);
    }
    return Sphi_[n]=ans;
}
inline int get_Smiu(Re n){
    if(n<=TO)return Smiu[n];
    if(Smiu_[n])return Smiu_[n];
    Re ans=1;
    for(Re l=2,r;l<=n;l=r+1){
        r=n/(n/l);
        ans-=(r-l+1)*get_Smiu(n/l);
    }
    return Smiu_[n]=ans;
}
int main(){
//    freopen("123.txt","r",stdin);
    in(T),get_(TO=N23-3);
    while(T--)in(x),printf("%lld %d\n",get_Sphi(x),get_Smiu(x));
}

(2).【数组记忆化】

【模板】 杜教筛(\(\text{Sum}\)\(\text{[P4213]}\)

#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
#define Re register int
#define LL long long
using namespace std;
const int N23=1664511+3,N13=1303,N=2147483647;
int x,T,cnt,pan[N23],pri[N23],phi[N23],miu[N23];
int TO,vis1[N13],vis2[N13],Smiu[N23],Smiu_[N13];
LL Sphi[N23],Sphi_[N13];
inline void in(Re &x){
    Re fu=0;x=0;char ch=getchar();
    while(ch<'0'||ch>'9')fu|=ch=='-',ch=getchar();
    while(ch>='0'&&ch<='9')x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
    x=fu?-x:x;
}
inline void get_(Re N){
    miu[1]=phi[1]=pan[1]=1;
    for(Re i=2;i<=N;++i){
        if(!pan[i])pri[++cnt]=i,miu[i]=-1,phi[i]=i-1;
        for(Re j=1;j<=cnt&&pri[j]<=N/i;++j){
            pan[i*pri[j]]=1;
            if(i%pri[j])miu[i*pri[j]]=-miu[i],phi[i*pri[j]]=phi[i]*phi[pri[j]];
            else{miu[i*pri[j]]=0,phi[i*pri[j]]=phi[i]*pri[j];break;}
        }
    }
    for(Re i=1;i<=N;++i)Smiu[i]=Smiu[i-1]+miu[i],Sphi[i]=Sphi[i-1]+phi[i];
}
inline LL get_Sphi(Re n){
    if(n<=TO)return Sphi[n];
    Re nn=N/n;
    if(vis1[nn])return Sphi_[nn];
    LL ans=(LL)n*(n+1)>>1;
    for(Re l=2,r;l<=n;l=r+1){
        r=n/(n/l);
        ans-=(LL)(r-l+1)*get_Sphi(n/l);
    }
    vis1[nn]=1;
    return Sphi_[nn]=ans;
}
inline int get_Smiu(Re n){
    if(n<=TO)return Smiu[n];
    Re nn=N/n;
    if(vis2[nn])return Smiu_[nn];
    Re ans=1;
    for(Re l=2,r;l<=n;l=r+1){
        r=n/(n/l);
        ans-=(r-l+1)*get_Smiu(n/l);
    }
    vis2[nn]=1;
    return Smiu_[nn]=ans;
}
int main(){
//    freopen("123.txt","r",stdin);
    in(T),get_(TO=N23-3);
    while(T--){
        in(x),printf("%lld %d\n",get_Sphi(x),get_Smiu(x));
        memset(vis1,0,sizeof(vis1));//注意对于每次询问的n,n/i都不同 
        memset(vis2,0,sizeof(vis2));//所以要清空 
    }
}

3.【最值反演 (Min-Max容斥)】

【模板】 \(\text{Card Collector [Hdu4336]}\)

#include<algorithm>
#include<cstring>
#include<cstdio>
#define LD double
#define LL long long
#define Re register int
using namespace std;
const int N=23,M=1048576+3;
int n,V,cnt[M];LD ans,p[N],Min[M];
inline void in(Re &x){
    int f=0;x=0;char ch=getchar();
    while(ch<'0'||ch>'9')f|=ch=='-',ch=getchar();
    while(ch>='0'&&ch<='9')x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
    x=f?-x:x;
}
int main(){
//    freopen("123.txt","r",stdin);
    while(~scanf("%d",&n)){
        V=(1<<n)-1,ans=0;
        for(Re i=1;i<=n;++i)scanf("%lf",&p[i]);
        for(Re s=1;s<=V;++s){
            Min[s]=0,cnt[s]=cnt[s>>1]+(s&1);
            for(Re i=1;i<=n;++i)if(s&(1<<i-1))Min[s]+=p[i];
            Min[s]=1.0/Min[s];
        }
        for(Re t=1;t<=V;++t)ans+=(cnt[t]&1)?Min[t]:-Min[t];
        printf("%lf\n",ans);
    }
}
posted @ 2020-05-25 15:49  辰星凌  阅读(833)  评论(0编辑  收藏  举报