【题解】Paid Roads [SP3953] [Poj3411]
【题解】Paid Roads [SP3953] [Poj3411]
传送门:\(\text{Paid}\) \(\text{Roads}\) \(\text{[SP3953]}\) \(\text{[Poj3411]}\)
【题目描述】
给出一张 \(n\) 个点 \(m\) 条边的有向图。对于每条边 \((x,y)\),如果之前经过 \(z\) 点,那么费用为 \(p\),否则为 \(r\)。求 \(1\) 到 \(n\) 的最小费用。如果无法到达则输出 “ \(\text{impossible}\) ”。
【样例】
样例输入:
4 5
1 2 1 10 10
2 3 1 30 50
3 4 3 80 80
2 1 2 10 10
1 3 2 10 50
样例输出:
110
【数据范围】
\(100 \%:\) \(1 \leqslant n,m \leqslant 10,\) \(0 \leqslant p_i,r_i \leqslant 100\)
【分析】
由于边的费用涉及到了是否经过某个点, 而且\(n\) 较小,因此可以考虑状压。
将每个点 \(i\) 分为 \(2^n-1\) 层,第 \(j\) 层表示当前在第 \(i\) 个点,状态为 \(j\)(二进制第 \(k\) 位为 \(1\) 就表示已经经过了点 \(k\),\(0\) 表示还未经过)的状态,跑一遍 \(\text{dijkstra}\) 或者 \(\text{SPFA}\) 即可。
也可以开一个二维的 \(\text{dis}\) 数组,\(dis[i][j]\) 表示当前在点 \(i\),状态为 \(j\) 的最短路,在最短路算法里面按照 \(j\) 分类更新 \(dis\)。
另外注意一下坑点:每个点可经过多次。
个人喜欢把所有的点全部建好,直接跑裸的最短路(就像写网络流那样)。
第二种写法代码就不放了。
【Code】
#include<algorithm>
#include<cstdio>
#include<queue>
#define LL long long
#define Re register int
using namespace std;
const int N=10300,M=2e4+3,inf=2e9;
int n,m,x,y,z,p,r,o,V,ans,dis[N],pan[N],head[N];
struct QWQ{int x,d;inline bool operator<(QWQ O)const{return d>O.d;}};
struct QAQ{int w,to,next;}a[M<<1];priority_queue<QWQ>Q;
inline void add(Re x,Re y,Re z){a[++o].w=z,a[o].to=y,a[o].next=head[x],head[x]=o;}
inline void in(Re &x){
Re f=0;x=0;char c=getchar();
while(c<'0'||c>'9')f|=c=='-',c=getchar();
while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+(c^48),c=getchar();
x=f?-x:x;
}
inline void dijkstra(Re st){
for(Re i=0;i<=n*V;++i)dis[i]=inf,pan[i]=0;//注意初始化时应扫描到n*V
Q.push((QWQ){st,dis[st]=0});
while(!Q.empty()){
Re x=Q.top().x;Q.pop();
if(pan[x])continue;
pan[x]=1;
for(Re i=head[x],to;i;i=a[i].next)
if(dis[to=a[i].to]>dis[x]+a[i].w)
Q.push((QWQ){to,dis[to]=dis[x]+a[i].w});
}
}
inline int Poi(Re i,Re j){return j+(i-1)*V;}//当前在点i状态为j
int main(){
// freopen("123.txt","r",stdin);
in(n),in(m),V=(1<<n)-1;
while(m--){
in(x),in(y),in(z),in(p),in(r);
for(Re j=0;j<=V;++j)
if(j&(1<<x-1))//如果j中包含了x,由于点可经过多次,所以不必判断y的情况
if(j&(1<<z-1))add(Poi(x,j),Poi(y,j|(1<<y-1)),p);//已经经过了z
else add(Poi(x,j),Poi(y,j|(1<<y-1)),r);//还没有经过z
}
dijkstra(Poi(1,1));ans=inf;//出发点为:只经过了1的状态,当前在点1
for(Re j=0;j<=V;++j)ans=min(ans,dis[Poi(n,j)]);
if(ans==inf)puts("impossible");
else printf("%d\n",ans);
}