【模板整合计划】DP动态规划

【模板整合计划】DP动态规划


一:【背包】

1.【01背包】

采药 \(\text{[P1048]}\)

#include<algorithm>
#include<cstdio>
int T,n,i,j,v[110],w[110],f[1010];
int main(){
    scanf("%d%d",&T,&n);
    for(i=1;i<=n;i++)scanf("%d%d",&v[i],&w[i]);
    for(i=1;i<=n;i++)
        for(j=T;j>=v[i];j--)
            f[j]=std::max(f[j],f[j-v[i]]+w[i]);
    printf("%d",f[T]);
}

2.【完全背包】

货币系统 \(\text{[P5020]}\)

#include<bits/stdc++.h>
using namespace std;
int T,n,ans,a[105],dp[30005];
int main(){
    scanf("%d",&T);
    while(T--){
        memset(dp,-127,sizeof(dp));
        scanf("%d",&n);dp[0]=ans=0;
        for(int i=1;i<=n;i++)scanf("%d",&a[i]);
        for(int i=1;i<=n;i++)
            for(int j=a[i];j<=25000;j++)
                dp[j]=max(dp[j],dp[j-a[i]]+1);
        for(int i=1;i<=n;++i)ans+=dp[a[i]]==1;
        printf("%d\n",ans);
    }
}

3.【多重背包(二进制优化)】

宝物筛选 \(\text{[P1776]}\)

const int N=103,M=4e4+3;
int n,m,x,y,z,V,ans,v[N*17],w[N*17],dp[M];
int main(){
    in(m),in(V);
    memset(dp,-127,sizeof(dp));
    dp[0]=0;
    while(m--){
        in(x),in(y),in(z);Re p=1;
        while(z>=p)v[++n]=y*p,w[n]=x*p,z-=p,p<<=1;
        if(z)v[++n]=y*z,w[n]=x*z;
    }
    for(Re i=1;i<=n;++i)
        for(Re j=V;j>=v[i];--j)
            dp[j]=max(dp[j],dp[j-v[i]]+w[i]);
    for(Re i=0;i<=V;++i)ans=max(ans,dp[i]);
    printf("%d\n",ans);
}

4.【混合背包】

樱花 \(\text{[P1833]}\)

#include<algorithm>
#include<cstdio>
using namespace std;
int x,a,b,c,d,T,n,i,j,t,f[1010],v[100010],w[100010];
int main(){
	scanf("%d:%d%d:%d%d",&a,&b,&c,&d,&n);
	T=c*60+d-a*60-b;
	for(i=1;i<=n;i++){
		scanf("%d%d%d",&a,&b,&c);
		if(!c){
			for(j=a;j<=T;j++)
				f[j]=max(f[j],f[j-a]+b);
			continue;
		}
		int p=1;
		while(c>=p){v[++t]=p*a,w[t]=p*b,c-=p,p<<=1;}
		v[++t]=c*a,w[t]=c*b;
	}
	for(i=1;i<=t;i++)
		for(j=T;j>=v[i];j--)
			f[j]=max(f[j],f[j-v[i]]+w[i]);
	printf("%d",f[T]);
	return 0;
}

5.【二维费用】

找啊找啊找 \(\text{GF [P1509]}\)

#include<algorithm>
#include<cstdio>
using namespace std;
int tmp,T1,T2,x,y,n,i,j,k,v1[105],v2[105],w[105],dp[105][105],ans[105][105];
int main(){
    scanf("%d",&n);
    for(i=1;i<=n;i++)scanf("%d%d%d",&v1[i],&v2[i],&w[i]);
    scanf("%d%d",&T1,&T2);
    for(i=1;i<=n;++i)
        for(j=T1;j>=v1[i];--j)
            for(k=T2;k>=v2[i];--k)
                if(dp[j][k]<(tmp=dp[j-v1[i]][k-v2[i]]+1)){
                    dp[j][k]=tmp;
                    ans[j][k]=ans[j-v1[i]][k-v2[i]]+w[i];
                }
                else if(dp[j][k]==tmp)ans[j][k]=min(ans[j][k],ans[j-v1[i]][k-v2[i]]+w[i]);
    printf("%d",ans[T1][T2]);
}

6.【分组背包】

通天之分组背包 \(\text{[P1757]}\)

#include<bits/stdc++.h>
using namespace std;
int a,i,j,k,T,n,m,f[1010],w[1010],v[1010],id[105][1010];
int main(){
    scanf("%d%d",&T,&n);
    for(i=1;i<=n;i++){
        scanf("%d%d%d",&v[i],&w[i],&a);
        id[a][++id[a][0]]=i;m=max(m,a);
    }
    for(k=1;k<=m;k++)
        for(j=T;j>=0;j--)
            for(i=1;i<=id[k][0];i++){
                a=id[k][i];
                if(j>=v[a])f[j]=max(f[j-v[a]]+w[a],f[j]);
            } 
    printf("%d",f[T]);
    return 0;
}

7.【依赖背包】

金明的预算方案 \(\text{[P1064]}\)

#include<algorithm>
#include<cstdio>
using namespace std;
int T,n,i,j,a[65],s,t,r1,r2,r[65][3],v[65],w[65],f[32010];
int main(){
    scanf("%d%d",&T,&n);
    v[0]=0xfffffff;
    for(i=1;i<=n;i++){
        scanf("%d%d%d",&v[i],&s,&a[i]);
        if(a[i])r[a[i]][++r[a[i]][0]]=i;w[i]=v[i]*s;
    }
    for(i=1;i<=n;i++)
        for(j=T;j>=v[i]&&(!a[i]);j--){
            t=j-v[i],r1=r[i][1],r2=r[i][2];
            f[j]=max(f[j],f[t]+w[i]);
            if(v[r1]<=t)f[j]=max(f[j],f[t-v[r1]]+w[i]+w[r1]);
            if(v[r2]<=t)f[j]=max(f[j],f[t-v[r2]]+w[i]+w[r2]);
            if(v[r1]+v[r2]<=t)f[j]=max(f[j],f[t-v[r1]-v[r2]]+w[i]+w[r1]+w[r2]);
        }
    printf("%d",f[T]);
}

8.【多人背包】

多人背包 \(\text{[P1858]}\)

#include<algorithm>
#include<cstring>
#include<cstdio>
int ans,T,n,i,j,k,K,a,b,t,re[45],v[210],w[210],f[5010][45];
int main(){
    scanf("%d%d%d",&K,&T,&n);
    memset(f,-127,sizeof(f));f[0][1]=0;
    for(i=1;i<=n;i++)scanf("%d%d",&v[i],&w[i]);
    for(i=1;i<=n;i++)
        for(j=T;j>=v[i];j--){
            a=b=1,t=0;
            while(t<=K)
                if(f[j][a]>=f[j-v[i]][b]+w[i])re[++t]=f[j][a++];
                else re[++t]=f[j-v[i]][b++]+w[i];
            for(k=1;k<=K;k++)f[j][k]=re[k];
        }
    for(i=1;i<=K;i++)ans+=f[T][i];
    printf("%d",ans);
}

9.【泛化物品】

烹调方案 \(\text{[P1417]}\)

#define lg long long
lg ans,T,n,i,j,f[100010];
struct QAQ{lg a,b,v;}Q[55];
inline bool cmp(const QAQ &a,const QAQ &b){return a.v*b.b<b.v*a.b;}
int main(){
	scanf("%lld%lld",&T,&n);
	for(i=1;i<=n;i++)scanf("%lld",&Q[i].a);
	for(i=1;i<=n;i++)scanf("%lld",&Q[i].b);
	for(i=1;i<=n;i++)scanf("%lld",&Q[i].v);
	std::sort(Q+1,Q+n+1,cmp);
	for(i=1;i<=n;i++)
		for(j=T;j>=Q[i].v;j--)
			f[j]=std::max(f[j],f[j-Q[i].v]+Q[i].a-j*Q[i].b);
	for(i=0;i<=T;i++)ans=std::max(ans,f[i]);
	printf("%lld",ans);
	return 0;
}

二:【区间DP】

石子合并 \(\text{[P1880]}\)

#include<bits/stdc++.h>
using namespace std;
const int inf=1e9;
int ans=inf,ans2=0,n,a[110],f[210][210],g[210][210],s[210]; 
int main(){
    scanf("%d",&n);
    for(int i=1;i<=n;i++)scanf("%d",&a[i]),s[i]=s[i-1]+a[i];
    for(int i=n+1;i<=2*n;i++)s[i]=s[i-1]+a[i-n];
    memset(f,-127,sizeof(f)),memset(g,127,sizeof(g));
    for(int i=1;i<=2*n;i++)f[i][i]=0,g[i][i]=0;
    for(int len=2;len<=n;len++)//枚举区间长度
	    for(int l=1;l+len-1<=2*n;l++){//枚举区间左端点
	        int r=l+len-1;
	        for(int k=l;k<r;k++)//枚举中间点
	            f[l][r]=max(f[l][r],f[l][k]+f[k+1][r]+s[r]-s[l-1]),
	            g[l][r]=min(g[l][r],g[l][k]+g[k+1][r]+s[r]-s[l-1]);
	    }
    for(int i=1;i<=n;i++)ans=min(ans,g[i][i+n-1]),ans2=max(ans2,f[i][i+n-1]);
    printf("%d\n%d\n",ans,ans2);
    return 0;
}

三:【状压DP】

(1).放置问题

\(\text{Corn Fields G [P3052]}\)

const int N=15,M=4100,P=1e8;
int n,m,x,V,ans,A[N],dp[N][M];
inline int judge(Re i,Re j){//判断在第i行放j状态是否合法
	return (A[i]&j)==j//j是A[i]的子集
		&&!(j&j<<1)&&!(j&j>>1);//j里面没有左右相邻的
}
int main(){
	in(n),in(m),V=(1<<m)-1;
	for(Re i=1;i<=n;++i)
		for(Re j=1;j<=m;++j)
			in(x),A[i]|=(x<<j-1);
	for(Re j=0;j<=V;++j)if(judge(1,j))dp[1][j]=1;
	for(Re i=2;i<=n;++i)
		for(Re j=0;j<=V;++j)if(judge(i,j))//枚举第i行的状态
			for(Re k=0;k<=V;++k)if(judge(i-1,k)&&!(j&k))//枚举第i-1行的状态
				(dp[i][j]+=dp[i-1][k])%=P;
	for(Re j=0;j<=V;++j)(ans+=dp[n][j])%=P;
	printf("%d\n",ans);
}

预处理合法状态:

const int N=15,M=4100,P=1e8;
int n,m,x,V,ans,A[N],zt[N][M],dp[N][M];
int main(){
	in(n),in(m),V=(1<<m)-1;
	for(Re i=1;i<=n;++i)
		for(Re j=1;j<=m;++j)
			in(x),A[i]|=(x<<j-1);
	for(Re j=0;j<=V;++j)if(!(j&j<<1)&&!(j&j>>1)){//j里面没有左右相邻的 
		for(Re i=1;i<=n;++i)if((A[i]&j)==j)zt[i][++zt[i][0]]=j;//如果j是A[i]的子集
	}
	for(Re j=1;j<=zt[1][0];++j)dp[1][j]=1;
	for(Re i=2;i<=n;++i)
		for(Re j=1;j<=zt[i][0];++j)
			for(Re k=1;k<=zt[i-1][0];++k)if(!(zt[i][j]&zt[i-1][k]))
				(dp[i][j]+=dp[i-1][k])%=P;
	for(Re j=1;j<=zt[n][0];++j)(ans+=dp[n][j])%=P;
	printf("%d\n",ans);
}

(3).枚举子集

\(\text{Cows in a Skyscraper G [P3052]}\)

时间复杂度 \(O(3^n)\)

const int N=1003,M=262144;
int n,K,V,A[N],cnt[M],f[M];
int main(){
	in(n),in(K),V=(1<<n)-1;
	for(Re i=1;i<=n;++i)in(A[i]);
	f[0]=0;
	for(Re j=0;j<=V;++j)
		for(Re i=1;i<=n;++i)
			if(j&(1<<i-1))cnt[j]+=A[i];
	for(Re j=1;j<=V;++j)
		for(Re k=j;k;k=(k-1)&j)//枚举j的子集
			if(cnt[k]<=K)//新的一组选了k状态 
				f[j]=min(f[j],f[j-k]+1);
	、printf("%d\n",f[V]);
}

四:【树形DP】

(1).【简单树形 DP】

没有上司的舞会 \(\text{[P1352]}\)

#include<algorithm>
#include<cstring>
#include<cstdio>
#define Re register int
using namespace std;
const int N=6003;
int x,y,o,n,A[N],fa[N],head[N],f[N][2];
struct QAQ{int next,to;}a[N];
inline void add(int x,int y){a[++o].to=y,a[o].next=head[x],head[x]=o;}
inline void dfs(int x){
    f[x][1]=A[x];//初始化
	for(Re i=head[x],to;i;i=a[i].next){
        dfs(to=a[i].to);
        f[x][0]+=max(f[to][0],f[to][1]);
        f[x][1]+=f[to][0];
    }
}
int main(){
    scanf("%d",&n);
    for(Re i=1;i<=n;i++)scanf("%d",&A[i]);
    for(Re i=1;i<n;i++)scanf("%d%d",&x,&y),fa[x]=y,add(y,x);
    for(Re i=1;i<=n;i++)
        if(!fa[i]){
            dfs(i);
            printf("%d\n",max(f[i][0],f[i][1]));
            return 0;
        }
}

(2).【树形依赖背包】

选课 \(\text{[CTSC1997] [P2014]}\)

#include<algorithm>
#include<cstring>
#include<cstdio>
using namespace std;
const int N=303;
int x,n,o,K,root=0,A[N],size[N],head[N],f[N][N];
struct QAQ{int to,next;}a[N];
inline void add(int x,int y){a[++o].to=y,a[o].next=head[x],head[x]=o;}
inline void dfs(int x){
	if(x!=root)f[x][1]=A[x];//非根节点必须选自己
	else f[x][0]=0;//根节点自己不能选
	size[x]=1;
	for(int i=head[x],to;i;i=a[i].next){
        dfs(to=a[i].to),size[x]+=size[to];
        for(int j=size[x];j;j--)
            for(int k=min(j,size[to]);k>=0;k--)
                f[x][j]=max(f[x][j],f[x][j-k]+f[to][k]);
    }
    if(x!=root)f[x][0]=0;//整个子树都不选的情况
}
int main(){
    scanf("%d%d",&n,&K);
    memset(f,-63,sizeof(f));
    for(int i=1;i<=n;i++)scanf("%d%d",&x,&A[i]),add(x,i);
    dfs(root);
    printf("%d",f[root][K]);
    return 0;
}

(3).【换根 DP】

\(\text{Great Cow Gathering G [P2986]}\)

#include<algorithm>
#include<cstring>
#include<cstdio>
#define LL long long
#define Re register int
using namespace std;
const LL N=1e5+3,inf=1e18;
int n,m,x,y,z,o,A[N],S[N],dis[N],size[N],head[N];LL ans=inf,f[N],g[N];
struct QAQ{int w,to,next;}a[N<<1];
inline void add(Re x,Re y,Re z){a[++o].w=z,a[o].to=y,a[o].next=head[x],head[x]=o;}
//dis[x]: x到fa[x]这条边的边权
//S[x]: x子树内(包含x)所有点的点权之和
//size[x]: x子树内(包含x)节点个数
//f[x]: x子树内(不包含x)所有点的 "到x的距离 乘以 自身点权" 之和
//g[x]: x子树外(不包含x)所有点的 "到x的距离 乘以 自身点权" 之和
inline void dfs1(Re x,Re fa){
	size[x]=1,S[x]=A[x];
	for(Re i=head[x],to;i;i=a[i].next)if((to=a[i].to)!=fa)
		dis[to]=a[i].w,dfs1(to,x),S[x]+=S[to],size[x]+=size[to],f[x]+=f[to]+(LL)S[to]*a[i].w;
}
inline void dfs2(Re x,Re fa){
	if(fa)g[x]=g[fa]+f[fa]-f[x]-(LL)S[x]*dis[x]+(LL)(S[1]-S[x])*dis[x];
	for(Re i=head[x],to;i;i=a[i].next)if((to=a[i].to)!=fa)dfs2(to,x);
	ans=min(ans,f[x]+g[x]);
}
int main(){
	in(n),m=n-1;
	for(Re i=1;i<=n;++i)in(A[i]);
	while(m--)in(x),in(y),in(z),add(x,y,z),add(y,x,z);
	dfs1(1,0),dfs2(1,0),printf("%lld\n",ans);
}

五:【数位DP】

\(\text{Windy}\)\(\text{[SCOI2009] [P2657]}\)

1.【dfs】

#include<cstring>
#include<cstdio>
#include<cmath>
#define R register int
using namespace std;
int a,b,l,num[12],dp[12][10];
inline int dfs(int len,int up,int ok){
    R i,ed,ans=0;
    if(len<1)return 1;
    if(!ok&&~dp[len][up]&&up!=-7)return dp[len][up];
    ed=ok?num[len]:9;
    for(i=0;i<=ed;i++)if(abs(i-up)>=2)
        ans+=dfs(len-1,(!i&&up==-7)?up:i,ok&&(i==ed));
    if(!ok&&up!=-7)dp[len][up]=ans;
    return ans;
}
inline int sovle(int x){
    l=0;
    while(x)num[++l]=x%10,x/=10;
    return dfs(l,-7,1);
}
int main(){
    scanf("%d%d",&a,&b);
    memset(dp,-1,sizeof(dp));
    printf("%d",sovle(b)-sovle(a-1));
}

2.【dp】

#include<cstdio>
#include<cmath>
#define R register int
using namespace std;
int i,j,k,a,b,l,ans,num[12],dp[12][10];
inline int dpp(int len){
    ans=0;
    for(i=1;i<len;i++)
        for(j=1;j<10;j++)
            ans+=dp[i][j];
    for(j=1;j<num[len];j++)ans+=dp[len][j];
    for(i=len-1;i>0;i--){
        for(j=0;j<num[i];j++)
            if(abs(num[i+1]-j)>=2)ans+=dp[i][j];
        if(abs(num[i]-num[i+1])<2)break;
    }
    if(!i)ans++;
    return ans;
}
inline int sovle(int x){
    l=0;
    while(x)num[++l]=x%10,x/=10;
    return dpp(l);
}
inline int sakura(){
    scanf("%d%d",&a,&b);
    for(i=0;i<10;i++)dp[1][i]=1;
    for(i=2;i<11;i++)
        for(j=0;j<10;j++)
            for(k=0;k<10;k++)
                if(abs(j-k)>=2)
                    dp[i][j]+=dp[i-1][k];
    printf("%d",sovle(b)-sovle(a-1));
}
int QAQWQ=sakura();
int main(){}

六:【DP 的优化】

1.【二分】

最长公共子序列 \(\text{[P1439]}\)

#include<bits/stdc++.h>
using namespace std;
int pan[100010],b[100010],f[100010],n,i,a,len=1,l,r,mid;
inline int in(){
    int x=0,fh=1;char c=getchar();
    while(c<'0'||c>'9')c=getchar();
    while(c>='0'&&c<='9')x=x*10+c-'0',c=getchar();
    return x*fh;
}
int main(){
    n=in();
    for(i=1;i<=n;i++)a=in(),pan[a]=i,f[i]=0xfffffff;
    for(i=1;i<=n;i++)a=in(),b[i]=pan[a];
    f[1]=b[1];
    for(i=2;i<=n;i++){
        l=0;r=len;
        if(b[i]>f[len])f[++len]=b[i];
        else{
            while(l<r){
                mid=(l+r)/2;
                if(f[mid]<b[i])l=mid+1;
                else r=mid;
            }
            f[l]=min(b[i],f[l]);
        }
    }
    printf("%d",len);
}

2.【二进制优化多重背包】

【模板】 宝物筛选 \(\text{[P1776]}\)

#include<algorithm>
#include<cstdio>
#define Re register int
using namespace std;
const int N=103,M=4e4+3,logN=17;
int m,n,x,y,z,V,ans,v[N*logN],w[N*logN],dp[M];
inline void in(Re &x){
    int f=0;x=0;char c=getchar();
    while(c<'0'||c>'9')f|=c=='-',c=getchar();
    while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+(c^48),c=getchar();
    x=f?-x:x;
}
int main(){
    in(m),in(V);
    for(Re i=1;i<=m;++i){
        in(x),in(y),in(z);
        for(Re j=1;j<=z;j<<=1)z-=j,w[++n]=x*j,v[n]=y*j;
        if(z)w[++n]=x*z,v[n]=y*z;
    }
    for(Re i=1;i<=n;++i)
        for(Re j=V;j>=v[i];--j)
            dp[j]=max(dp[j],dp[j-v[i]]+w[i]);
    for(Re j=0;j<=V;++j)ans=max(ans,dp[j]);
    printf("%d\n",ans);
}

3.【单调队列优化多重背包】

【模板】 多重背包 \(\text{[CodeVS5429]}\)

#include<cstdio>
#define Re register int
const int N=7003,M=7003;
int n,h,t,V,mp,tmp,v[N],w[N],c[N],Q[N],K[N],dp[M];
inline void in(Re &x){
    Re fu=0;x=0;char ch=getchar();
    while(ch<'0'||ch>'9')fu|=ch=='-',ch=getchar();
    while(ch>='0'&&ch<='9')x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
    x=fu?-x:x;
}
inline int max(Re a,Re b){return a>b?a:b;}
inline int min(Re a,Re b){return a<b?a:b;}
int main(){
    in(n),in(V);
    for(Re i=1;i<=n;++i)in(v[i]),in(w[i]),in(c[i]);
    for(Re i=1;i<=n;++i)
        for(Re r=0;r<v[i];++r){
            h=1,t=0,mp=(V-r)/v[i];
            for(Re p=0;p<=mp;++p){
                tmp=dp[p*v[i]+r]-w[i]*p;
                while(h<=t&&Q[t]<=tmp)--t;
                Q[++t]=tmp,K[t]=p;
                while(h<=t&&p-K[h]>min(c[i],V/v[i]))++h;
                dp[p*v[i]+r]=max(dp[p*v[i]+r],Q[h]+p*w[i]);
            }
        }
    printf("%d",dp[V]);
}

4.【矩阵加速递推】

5.【四边形不等式优化】

【模板】 \(\text{Lightning Conductor [POI2011] [P3315]}\)

(1).【分治】

#include<algorithm>
#include<cstdio>
#include<cmath>
#define Re register int
using namespace std;
const int N=5e5+3;
int i,j,n,h,t,a[N],Q[N],Poi[N];
double tmp,p[N],sqr[N];
inline void in(Re &x){
    int f=0;x=0;char c=getchar();
    while(c<'0'||c>'9')f|=c=='-',c=getchar();
    while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+(c^48),c=getchar();
    x=f?-x:x;
}
inline void sakura(Re l,Re r,Re L,Re R){
    if(l>r)return;
    Re mid=l+r>>1,j0;double mx=0;
    for(Re j=L;j<=mid&&j<=R;++j)
//暴力找p[i]的最优决策点j0,而其决策点j必须满足j<=i,即此处的j<=mid
        if((tmp=a[j]+sqr[mid-j])>mx)mx=tmp,j0=j;
    p[mid]=max(p[mid],mx);
    sakura(l,mid-1,L,j0),sakura(mid+1,r,j0,R);
}
int main(){
    in(n);
    for(Re i=1;i<=n;++i)in(a[i]),sqr[i]=sqrt(i);
    sakura(1,n,1,n);
    for(Re i=1;i<n-i+1;++i)swap(a[i],a[n-i+1]),swap(p[i],p[n-i+1]);
    sakura(1,n,1,n);
    for(Re i=n;i;--i)printf("%d\n",(int)ceil(p[i])-a[i]);
}

(2).【二分栈】

#include<algorithm>
#include<cstdio>
#include<cmath>
#define Re register int
using namespace std;
const int N=5e5+3;
int i,j,n,h,t,a[N],Q[N],Poi[N];
double p[N],sqr[N];
inline void in(Re &x){
    int f=0;x=0;char c=getchar();
    while(c<'0'||c>'9')f|=c=='-',c=getchar();
    while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+(c^48),c=getchar();
    x=f?-x:x;
}
inline double Y(Re i,Re j){return a[j]+sqr[i-j];}
inline int find_Poi(int j1,int j2){//找到两个直线的交点i
    Re l=j2,r=n,mid,ans=n+1;//为了处理两个直线没有交点的情况,用一个变量记录答案
    while(l<=r){
        mid=l+r>>1;
        if(Y(mid,j1)<=Y(mid,j2))ans=mid,r=mid-1;
//当前这个位置i使得直线j1的纵坐标小于直线j2的纵坐标,说明这个点i在交点的右方,所以右边界要缩小
        else l=mid+1;
    }
    return ans;
}
inline void sakura(){
    h=1,t=0;
    for(i=1;i<=n;++i){//由于i本身也是一个决策点,所以要先入队再取答案择优
        while(h<t&&Poi[t-1]>=find_Poi(Q[t],i))--t;//如果出现了上述可踢的情况,出队
        Poi[t]=find_Poi(Q[t],i),Q[++t]=i;
        while(h<t&&Poi[h]<=i)++h;
//找到第一个位置j使得直线Q[j]与直线Q[j+1]的交点大于i,
//那么直线Q[j]就是i前面在最上面的直线,即答案,自己画个图模拟一下就懂了
        p[i]=max(p[i],Y(i,Q[h]));
    }
}
int main(){
    in(n);
    for(Re i=1;i<=n;++i)in(a[i]),sqr[i]=sqrt(i);
    sakura();
    for(Re i=1;i<n-i+1;++i)swap(a[i],a[n-i+1]),swap(p[i],p[n-i+1]);
    sakura();
    for(Re i=n;i;--i)printf("%d\n",(int)ceil(p[i])-a[i]);
}

6.【斜率优化】

(1).【单调队列(x 与 k 均单调)】

【模板】 玩具装箱 \(\text{toy}\) \(\text{[P3195]}\)

#include<cstring>
#include<cstdio>
#define LL long long
#define Re register LL
const int N=5e4+5;
LL i,j,n,L,h=1,t=0,Q[N],S[N],dp[N];
//S[n]=∑C[i]+1, dp[i]=min(dp[j]+(S[i]-(S[j]+L+1))^2),++L
//dp[i]=S[i]^2-2*S[i]*L+dp[j]+(S[j]+L)^2-2S[i]*S[j]
//(2*S[i]) * S[j] + (dp[i]-S[i]^2+2S[i]L)=(dp[j]+(S[j]+L)^2)
//   k     *  x   +           b          =        y
inline LL min(Re a,Re b){return a<b?a:b;}
inline LL X(Re j){return S[j];}
inline LL Y(Re j){return dp[j]+(S[j]+L)*(S[j]+L);}
inline long double slope(Re i,Re j){return (long double)(Y(j)-Y(i))/(X(j)-X(i));}//记得开long double
int main(){
    scanf("%lld%lld",&n,&L);++L;
    for(i=1;i<=n;S[i]+=S[i-1]+1,++i)scanf("%lld",&S[i]);
    Q[++t]=0;//重中之重
    for(i=1;i<=n;++i){
        while(h<t&&slope(Q[h],Q[h+1])<=2*S[i])++h;//至少要有两个元素 h<t。出队判断时尽量加上等号
        dp[i]=dp[j=Q[h]]+(S[i]-S[j]-L)*(S[i]-S[j]-L);
        while(h<t&&slope(Q[t-1],Q[t])>=slope(Q[t-1],i))--t;//至少要有两个元素 h<t。入队判断时尽量加上等号
        Q[++t]=i;
    }
    printf("%lld",dp[n]);
}

(2).【二分+单调队列(x 单调 k 不单调)】

【模板】 任务安排 \(\text{[SDOI2012]}\)

#include<cstring>
#include<cstdio>
#define LL long long
#define Re register LL
const int N=3e5+5;
LL i,j,n,h=1,t=0,S,Q[N],ST[N],SF[N],dp[N];
//dp[p][i]=min(dp[p-1][j]+(ST[i]+S*p)*(SF[i]-SF[j]));
//dp[i]=dp[j]+ST[i]*(SF[i]-SF[j])+S*(SF[n]-SF[j]);
//(S+ST[i]) * SF[j] + (dp[i]-ST[i]*SF[i]-S*SF[i]) = (dp[j])
//    k     *   x   +              b              = y
//ti可小于0,所以ST[i]非递增,只可二分
//fi可等于0,所以SF[i](X)非严格递增,因此需要特判X(i)==X(j)的情况
inline LL min(Re a,Re b){return a<b?a:b;}
inline LL X(Re j){return SF[j];}
inline LL Y(Re j){return dp[j];}
inline long double slope(Re i,Re j){return X(j)==X(i)?(Y(j)>=Y(i)?1e18:-1e18):(long double)(Y(j)-Y(i))/(X(j)-X(i));}
//由于需要二分查找,多了一些限制:队列里不能有在同一位置的点,返回inf还是-inf都影响着是否删除重点,平时不可不管,二分必须注意返回值
inline LL sakura(Re k){
    if(h==t)return Q[h];
    Re l=h,r=t;
    while(l<r){
        Re mid=l+r>>1,i=Q[mid],j=Q[mid+1];
        if(slope(i,j)<k)l=mid+1;
//        if( (Y(j) - Y(i)) < k * (X(j) - X(i)) )l=mid+1;//注意是(j)-(i)因为Q[mid+1]>Q[mid]s即j>i即SF[j]>SF[i]即X(j)>X(i),如果是(i)-(j)的话乘过去要变号
        else r=mid;
    }
    return Q[l];
}
int main(){
    scanf("%lld%lld",&n,&S);
    for(i=1;i<=n;ST[i]+=ST[i-1],SF[i]+=SF[i-1],++i)scanf("%lld%lld",&ST[i],&SF[i]);
    Q[++t]=0;
    for(i=1;i<=n;++i){
        j=sakura(S+ST[i]);
        dp[i]=dp[j]+ST[i]*(SF[i]-SF[j])+S*(SF[n]-SF[j]);
        while(h<t&&slope(Q[t-1],Q[t])>=slope(Q[t-1],i))--t;//此处取等号作用出现,如果不取等会WA
        Q[++t]=i;
    }
    printf("%lld",dp[n]);
}

(3).【CDQ(x 与 k 均不单调)】

【模板】 \(\text{Building Bridges [CEOI2017]}\)

#include<algorithm>
#include<cstring>
#include<cstdio>
#define LD long double
#define LL long long
#define Re register int
#define S2(a) (1ll*(a)*(a))
using namespace std;
const LL N=1e5+3,inf=1e18;
int n,H[N],W[N],Q[N];LL S[N],dp[N];
inline void in(Re &x){
    int f=0;x=0;char c=getchar();
    while(c<'0'||c>'9')f|=c=='-',c=getchar();
    while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+(c^48),c=getchar();
    x=f?-x:x;
}
//dp[i]=min(dp[i],dp[j]+(H[i]-H[j])*(H[i]-H[j])+S[i-1]-S[j]);
//dp[i]=dp[j]-2*H[i]*H[j]+H[j]*H[j]+H[i]*H[i]+S[i-1]-S[j]
//(2*H[i]) * H[j] + (dp[i]-S[i-1]-H[i]*H[i]) = (dp[j]+H[j]*H[j]-S[j])
//   k     *  x   +            b             =          y
#define X(j) (a[j].x)
#define Y(j) (a[j].y)
struct QAQ{
    int k,x,id;LL y;
    inline bool operator<(const QAQ &O)const{return x!=O.x?x<O.x:y<O.y;}
}a[N],b[N];
inline bool cmp(QAQ A,QAQ B){return A.k<B.k;}
inline LD slope(Re i,Re j){return X(i)==X(j)?(Y(j)>Y(i)?inf:-inf):(LD)(Y(j)-Y(i))/(X(j)-X(i));}
inline void CDQ(Re L,Re R){
    if(L==R){Re j=a[L].id;a[L].y=dp[j]+(LL)H[j]*H[j]-S[j];return;}
    Re mid=L+R>>1,p1=L,p2=mid+1,h=1,t=0;
    for(Re i=L;i<=R;++i)a[i].id<=mid?b[p1++]=a[i]:b[p2++]=a[i];
    for(Re i=L;i<=R;++i)a[i]=b[i];
    CDQ(L,mid);
    for(Re i=L;i<=mid;++i){
        while(h<t&&slope(Q[t-1],Q[t])>=slope(Q[t-1],i))--t;
        Q[++t]=i;
    }
    for(Re i=mid+1,j,id;i<=R;++i){
        while(h<t&&slope(Q[h],Q[h+1])<=a[i].k)++h;
        if(h<=t)id=a[i].id,j=Q[h],dp[id]=min(dp[id],a[j].y-(LL)a[i].k*a[j].x+S[id-1]+(LL)H[id]*H[id]);
    }
    CDQ(mid+1,R);
    Re w=L-1;p1=L,p2=mid+1;
    while(p1<=mid&&p2<=R)b[++w]=a[p1]<a[p2]?a[p1++]:a[p2++];
    while(p1<=mid)b[++w]=a[p1++];while(p2<=R)b[++w]=a[p2++];
    for(Re i=L;i<=R;++i)a[i]=b[i];
}
int main(){
//    freopen("123.txt","r",stdin);
    in(n);
    for(Re i=1;i<=n;++i)in(H[i]);
    for(Re i=1;i<=n;++i)in(W[i]);
    for(Re i=1;i<=n;++i)S[i]=S[i-1]+W[i],dp[i]=inf;
    for(Re i=1;i<=n;++i)a[i].k=(H[i]<<1),a[i].x=H[i],a[i].id=i;
    sort(a+1,a+n+1,cmp);
    dp[1]=0,CDQ(1,n);
    printf("%lld\n",dp[n]);
}

(4).【Splay 维护动态凸包(x 与 k 均不单调)】



七:【插头 DP】

1.【多回路插头 DP】

【模板】 \(\text{Eat the Trees [P5074]}\)

#include<algorithm>
#include<cstring>
#include<cstdio>
#define LL long long
#define Re register int
using namespace std;
const int N=15,M=8192+3;
int n,m,o,V,T,A[N][N];LL dp[2][M];
inline void in(Re &x){
    int f=0;x=0;char c=getchar();
    while(c<'0'||c>'9')f|=c=='-',c=getchar();
    while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+(c^48),c=getchar();
    x=f?-x:x;
}
int main(){
//    freopen("123.txt","r",stdin);
    in(T);
    while(T--){
        in(n),in(m),V=(1<<m+1)-1;
        for(Re i=1;i<=n;++i)
            for(Re j=1;j<=m;++j)
                in(A[i][j]);
        for(Re j=0;j<=V;++j)dp[0][j]=dp[1][j]=0;
        dp[o][0]=1;
        for(Re i=1;i<=n;++i){
            o^=1;
            for(Re s=0;s<=V;++s)dp[o][s]=(s&1)?0:dp[o^1][s>>1];//把线拉下来
            for(Re j=1;j<=m;++j){
                o^=1;
                for(Re s=0;s<=V;++s)dp[o][s]=0;
                for(Re s=0;s<=V;++s)if(dp[o^1][s]){
                    Re L=(s>>j-1)&1,U=(s>>j+1-1)&1;
                    if(A[i][j]){//可以铺线
                        dp[o][s^(1<<j-1)^(1<<j+1-1)]+=dp[o^1][s];//横和竖和左上拐和右下拐
                        if(L!=U)dp[o][s]+=dp[o^1][s];//左下拐和右上拐
                    }
                    else{//不可以铺线
                        if(!L&&!U)dp[o][s]+=dp[o^1][s];//无插头才可以转移
                    }
                }
            }
        }
        printf("%lld\n",dp[o][0]);
    }
}

2.【单回路插头 DP】

(1).【 括号表示法】

【模板】 插头 \(\text{dp}\)

#include<algorithm>
#include<cstring>
#include<cstdio>
#define LL long long
#define Re register int
using namespace std;
const int N=14,M=1594323+3;
int n,m,o,V,edx,edy,Mi[N],A[N][N];LL ans,dp[2][M];char s[N];
inline void in(Re &x){
    int f=0;x=0;char c=getchar();
    while(c<'0'||c>'9')f|=c=='-',c=getchar();
    while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+(c^48),c=getchar();
    x=f?-x:x;
}
int main(){
//    freopen("123.txt","r",stdin);
    in(n),in(m),Mi[0]=1;
    for(Re i=1;i<=m+1;++i)Mi[i]=Mi[i-1]*3;V=Mi[m+1]-1;
    for(Re i=1;i<=n;++i){
        scanf("%s",s+1);
        for(Re j=1;j<=m;++j)if(!(A[i][j]=(s[j]=='*')))edx=i,edy=j;
    }
//    printf("edx=%d, edy=%d\n",edx,edy);
    dp[o][0]=1;
    for(Re i=1;i<=n;++i){
        o^=1;
        for(Re s=0;s<=V;++s)dp[o][s]=s%3?0:dp[o^1][s/3];
        for(Re j=1;j<=m;++j){
            o^=1;
            for(Re s=0;s<=V;++s)dp[o][s]=0;
            for(Re s=0;s<=V;++s)if(dp[o^1][s]){
                Re L=s/Mi[j-1]%3,U=s/Mi[j+1-1]%3;
                if(A[i][j]){if(!L&&!U)dp[o][s]+=dp[o^1][s];}
                else if(!L&&!U)dp[o][s+Mi[j-1]+2*Mi[j+1-1]]+=dp[o^1][s];
                else if(!L&&U)dp[o][s]+=dp[o^1][s],dp[o][s+U*Mi[j-1]-U*Mi[j+1-1]]+=dp[o^1][s];
                else if(L&&!U)dp[o][s]+=dp[o^1][s],dp[o][s-L*Mi[j-1]+L*Mi[j+1-1]]+=dp[o^1][s];
                else if(L==1&&U==1){
                    Re cnt=1;
                    for(Re k=j+2;k<=m;++k){
                        if(s/Mi[k-1]%3==1)++cnt;
                        else if(s/Mi[k-1]%3==2)--cnt;
                        if(!cnt){dp[o][s-Mi[j-1]-Mi[j+1-1]-Mi[k-1]]+=dp[o^1][s];break;}//2变1
                    }
                }
                else if(L==2&&U==2){
                    Re cnt=1;
                    for(Re k=j-1;k>=1;--k){
                        if(s/Mi[k-1]%3==1)--cnt;
                        else if(s/Mi[k-1]%3==2)++cnt;
                        if(!cnt){dp[o][s-2*Mi[j-1]-2*Mi[j+1-1]+Mi[k-1]]+=dp[o^1][s];break;}//1变2
                    }
                }
                else if(L==2&&U==1)dp[o][s-2*Mi[j-1]-Mi[j+1-1]]+=dp[o^1][s];
                else if(L==1&&U==2)if(i==edx&&j==edy&&!(s-Mi[j-1]-2*Mi[j+1-1]))ans+=dp[o^1][s];
            }
        }
    }
    printf("%lld\n",ans);
}

(2).【括号表示法+优化状态枚举】

【模板】 插头 \(\text{dp}\)

#include<algorithm>
#include<cstring>
#include<cstdio>
#define LL long long
#define Re register int
using namespace std;
const int N=14,M=1594323+3;
int n,m,o,V,edx,edy,Mi[N],A[N][N];LL ans,dp[2][M];char s[N];
inline void in(Re &x){
    int f=0;x=0;char c=getchar();
    while(c<'0'||c>'9')f|=c=='-',c=getchar();
    while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+(c^48),c=getchar();
    x=f?-x:x;
}
int st[2][M];
inline void add(Re s,LL v){
    if(!dp[o][s])st[o][++st[o][0]]=s;
    dp[o][s]+=v;
}
inline void CL(){
    for(Re i=1;i<=st[o][0];++i)dp[o][st[o][i]]=0;
    st[o][0]=0;
}
int main(){
//    freopen("123.txt","r",stdin);
    in(n),in(m),Mi[0]=1;
    for(Re i=1;i<=m+1;++i)Mi[i]=Mi[i-1]*3;V=Mi[m+1]-1;
    for(Re i=1;i<=n;++i){
        scanf("%s",s+1);
        for(Re j=1;j<=m;++j)if(!(A[i][j]=(s[j]=='*')))edx=i,edy=j;
    }
//    printf("edx=%d, edy=%d\n",edx,edy);
    dp[o][st[o][++st[o][0]]=0]=1;
    for(Re i=1;i<=n;++i){
        o^=1,CL();
        for(Re I=1;I<=st[o^1][0];++I)if(st[o^1][I]*3<=V&&dp[o^1][st[o^1][I]])
            dp[o][st[o][++st[o][0]]=st[o^1][I]*3]=dp[o^1][st[o^1][I]];
        for(Re j=1;j<=m;++j){
            o^=1,CL();
            for(Re I=1;I<=st[o^1][0];++I)if(dp[o^1][st[o^1][I]]){
                Re s=st[o^1][I];LL v=dp[o^1][s];
                Re L=s/Mi[j-1]%3,U=s/Mi[j+1-1]%3;
                if(A[i][j]){if(!L&&!U)add(s,v);}
                else if(!L&&!U)add(s+Mi[j-1]+2*Mi[j+1-1],v);
                else if(!L&&U)add(s,v),add(s+U*Mi[j-1]-U*Mi[j+1-1],v);
                else if(L&&!U)add(s,v),add(s-L*Mi[j-1]+L*Mi[j+1-1],v);
                else if(L==1&&U==1){
                    Re cnt=1;
                    for(Re k=j+2;k<=m;++k){
                        if(s/Mi[k-1]%3==1)++cnt;
                        else if(s/Mi[k-1]%3==2)--cnt;
                        if(!cnt){add(s-Mi[j-1]-Mi[j+1-1]-Mi[k-1],v);break;}//2变1
                    }
                }
                else if(L==2&&U==2){
                    Re cnt=1;
                    for(Re k=j-1;k>=1;--k){
                        if(s/Mi[k-1]%3==1)--cnt;
                        else if(s/Mi[k-1]%3==2)++cnt;
                        if(!cnt){add(s-2*Mi[j-1]-2*Mi[j+1-1]+Mi[k-1],v);break;}//1变2
                    }
                }
                else if(L==2&&U==1)add(s-2*Mi[j-1]-Mi[j+1-1],v);
                else if(L==1&&U==2)if(i==edx&&j==edy&&!(s-Mi[j-1]-2*Mi[j+1-1]))ans+=v;
            }
        }
    }
    printf("%lld\n",ans);
}
posted @ 2019-05-27 19:24  辰星凌  阅读(1470)  评论(0编辑  收藏  举报