【题解】Kathy函数 [BZOJ1223] [P2235] [HNOI2002]
【题解】Kathy函数 [BZOJ1223] [P2235] [HNOI2002]
这几疯狂刷了数位\(dp\)的题,到这道题时被卡了一天,一看大佬的讲解发现居然是求回文数╮(╯_╰)╭
感觉被大佬狠狠地蹂蹑了一番。。。
废话到此结束,进入正题:
满足\(f(n)=n\)的\(n\)在二进制的形式下一定是一个回文数
例如:
\(f(1)=1\) (\(1\))
\(f(3)=3\) (\(11\))
\(f(5)=5\) (\(101\))
\(f(7)=7\) (\(111\))
至于为什么会有这个性质,这里就作证明(都懒得给自己的懒惰找借口了)
假设已经成功的证明了这个结论,那么问题就变成了在\([1,n]\)中找到符合二进制形式为回文数的总个数,这里我提供一种用\(dfs\)实现数位\(dp\)的思路
可以先写一下这道题(因为不需要高精):
只需要输出区间内回文数的总个数
LightOJ1205
用\(dfs\)找回文数个数:
一:转进制
首先我们需要把\(n\)转化为二进制存储在一个数组\(num[lenn]\)中
二:DFS
\(dfs(st,pos,ok,limit)\)
记搜以及状态表示:
用一个数组记录已经搜过的地方,\(dp[pos][ok][st]\) 示已经选到了第\(pos\)位,前已经选好的是否满足回文\(ok\),去前导\(0\)后共有\(st\)位,并且前面已选的并未全部达到上限(\(pos\)开始后面可以随意选\(0\)或\(1\)),此时的回文数总数。
\(limit\)表示前面已选的是否全达到上限,如果是,那么这一位的可以选的数的上限为\(num[pos]\),否则可以随意选,\(ed=limit?num[pos]:1\)。
如果当前状态并未受限,且当前状态的\(dp\)值已经被记录,直接返回这个值
如何枚举递归
每当选了一个数\(i\)时, \(tmp[pos]=i\)。
(1) 如果前面都没选(即全是前\(0\),\(st=pos\)),
\(ans+=dfs\)(\(st-1\),\(pos-1\),\(ok\),\(limit\)&&\(i==ed\))
(2) 如果前面选了(即\(st>pos\))
- 如果当前状态是回文数,且当前选的这位在\(st\)的后半段(即\(ok\)&&\(pos<=st/2\)),则\(okk=tmp[st-pos+1]==i\)
- 否则 \(okk=ok\)。
\(ans+=dfs\)(\(st\),\(pos-1\),\(okk\),\(limit\)&&\(i==ed\))
\(dfs\)边界
当\(pos==0\)(即已经选完了所有位)
如果满足回文数(即\(ok=1\))且选了数(即并非全是\(0\),\(st>0\))\(return 1\)。
三.高精
推荐写结构体,用起来方便,不会的可以参考一下大佬的高精模板
最后附上代码:
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
const int base = 1e8;
const int N = 20;
int aux[N << 3];
struct bigint {
int s[N], l;
void CL() { l = 0; memset(s, 0, sizeof(s)); }
void pr()
{
printf("%d", s[l]);
for (int i = l - 1; i; i--)
printf("%08d", s[i]);
}
void re_l()
{
int i, x = 0, k = 1, L = 0, fl, o;
char c = getchar();
for (; c < '0' || c > '9'; c = getchar());
for (; c >= '0' && c <= '9'; c = getchar())
{
if (!(L - 1) && !aux[L])
L--;
aux[++L] = c - '0';
}
CL();
l = L / 8 + ((o = L % 8) > 0);
for (i = 1; i <= o; i++)
x = x * 10 + aux[i];
if (o)
s[l] = x;
fl = !o ? l + 1 : l;
for (i = o + 1, x = 0; i <= L; i++, k++)
{
x = x * 10 + aux[i];
if (!(k ^ 8))
{
s[--fl] = x;
x = k = 0;
}
}
if (!l)
l = 1;
}
ll toint()
{
ll x = 0;
for (int i = l; i; i--)
x = x * base + s[i];
return x;
}
bigint operator = (int b)
{
CL();
do
{
s[++l] = b % base;
b /= base;
} while (b > 0);
return *this;
}
bigint operator = (ll b)
{
CL();
do
{
s[++l] = b % base;
b /= base;
} while (b > 0);
return *this;
}
bigint operator + (const int &b)
{
bigint c = *this;
ll x = b;
for (int i = 1; i <= l && x; i++)
{
x = x + c.s[i];
c.s[i] = x % base;
x /= base;
}
if(x)c.s[++c.l] = x;
return c;
}
bigint operator + (const ll &b)
{
bigint c = *this;
ll x = b;
for (int i = 1; i <= l && x; i++)
{
x = x + c.s[i];
c.s[i] = x % base;
x /= base;
}
if (x)
c.s[++c.l] = x;
return c;
}
bigint operator + (bigint &b)
{
if (b.l < 3)
return *this + b.toint();
bigint c;
ll x = 0;
int k = l < b.l ? b.l : l;
c.CL();
c.l = k;
for (int i = 1; i <= k; i++)
{
x = x + s[i] + b.s[i];
c.s[i] = x % base;
x /= base;
}
if (x)
c.s[++c.l] = x;
return c;
}
bigint operator / (const int &b)
{
bigint c;
ll x = 0;
c.CL();
for (int i = l; i; i--)
{
c.s[i] = (x * base + s[i]) / b;
x = (x * base + s[i]) % b;
}
for (c.l = l; !c.s[c.l] && c.l > 1; c.l--);
return c;
}
bigint operator % (const int &b)
{
bigint c;
ll x = 0;
c.CL();
for (int i = l; i; i--)
x = (x * base + s[i]) % b;
return c = x;
}
bool operator > (const bigint &b) const
{
if (l ^ b.l)
return l > b.l;
for (int i = l; i; i--)
if (s[i] ^ b.s[i])
return s[i] > b.s[i];
return false;
}
bigint operator += (bigint &b)
{
return *this = *this + b;
}
bool operator > (int b) const{
bigint c;return *this > (c = b);
}
};
//以上皆为高精度部分
bigint a;
int num[350],tmp[350];bigint dp[350][2][350];
bool pan[350][2][350];
inline bigint dfs(int st,int len,int ok,bool limit){
bigint ans,pp;ans=0;pp=0;
if(len<1){//边界
if(ok&&st>0)ans=1;
return ans;
}
if(!limit&&pan[len][ok][st])return dp[len][ok][st];//返回所记录的值
int ed=limit?num[len]:1;//处理枚举上限
for(int i=0;i<=ed;i++){
tmp[len]=i;//记录每次选的数,方便判断是否满足回文
if(st==len&&!i)pp=dfs(st-1,len-1,ok,limit&&i==ed),ans+=pp;//如果一直都没选数
else pp=dfs(st,len-1,(ok&&len<=st/2)?tmp[st-len+1]==i:ok,limit&&i==ed),ans+=pp;//如果选了数
}
if(!limit)dp[len][ok][st]=ans,pan[len][ok][st]=1;//记录
return ans;
}
int main(){
a.re_l();ll Lenn=0;
while(a>0){num[++Lenn]=(a%2).toint();a=(a/2);}//转成2进制存起来
bigint ans=dfs(Lenn,Lenn,1,1);
ans.pr();
return 0;
}