2022“杭电杯”(1)补题
1002 Dragon slayer(BFS做法)
原题链接 https://acm.hdu.edu.cn/showproblem.php?pid=7139
比赛签到题都没写出来,还是太菜了
题意
在一个(n,m)的区域内有k面墙
勇者从(xs+0.5,ys+0.5)出发到恶龙的位置( xt+0.5, yt+0.5)。
求勇者最少要消去多少面墙
思路
由于勇者从(xs+0.5,ys+0.5),恶龙的位置( xt+0.5, yt+0.5)不如将每个坐标都乘以2
那么墙的位置就是偶数的行和列,人与龙的位置就是奇数。
由于k≤15数据很小所以可以采取暴力的做法。枚举每面墙是消去还是不消去。一共2k种情况,每次bfs最多4nm种情况(因为坐标乘2),把每次的结果取最小值得到答案
代码实现
#include <algorithm>
#include <iostream>
#include <cstring>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#define IOS ios::sync_with_stdio(0),cin.tie(0)
using namespace std;
typedef pair<int,int> pii;
typedef long long ll;
const int N = 30 + 10;
int n, m, k;
int path[N], g[N][N], d[N][N];;
int mi, xs, ys, xt, yt;
struct tk {
int x1, x2, y1, y2;
}wall[N];
struct T {
int x, y;
};
//初始化当前的地图
void init() {
memset(g, 0, sizeof g);
memset(d, 0, sizeof d);
d[ys][xs] = 1;
int x1, y1, x2, y2;
for(int i = 1; i <= k; i++) {
if(path[i]) {
x1 = wall[i].x1;
x2 = wall[i].x2;
y1 = wall[i].y1;
y2 = wall[i].y2;
x1 *= 2; x2 *= 2; y1 *= 2; y2 *= 2;
if(x1 == x2) {
for(int i = min(y1,y2); i <= max(y1,y2); i++) {
g[i][x1] = 1;
}
} else if(y1 == y2) {
for(int i = min(x1,x2); i <= max(x1,x2); i++) g[y1][i] = 1;
}
}
}
}
void bfs() {
int now = 0;
for(int i = 1; i <= k; i++) { //减少无用的bfs,缩短时间
if(path[i] == 0) now++;
if(now >= mi) return ;
}
queue<T> q;
q.push({xs,ys});
init();
int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
while(q.size()) {
T t = q.front();
q.pop();
for(int i = 0; i < 4; i++) {
int x = t.x + dx[i], y = t.y + dy[i];
if(x >= 0 && y >= 0 && x <= n && y <= m && g[y][x] == 0 && d[y][x] == 0) {
if(x == xt && y == yt) {
mi = now;
return ;
}
q.push({x,y});
d[y][x] = 1;
}
}
}
}
//按二进制递减顺序枚举每面墙存在的情况
void dfway(int u) {
if(u == k + 1) {
bfs();
return ;
}
path[u] = 1;
dfway(u + 1);
path[u] = 0;
dfway(u + 1);
}
void solve() {
cin >> n >> m >> k;
cin >> xs >> ys >> xt >> yt;
n *= 2; m *= 2; xs *= 2; ys *= 2; xt *= 2; yt *= 2;
xs++; ys++; xt++; yt++;
for(int i = 1; i <= k; i++) {
int x1, x2, y1, y2;
cin >> x1 >> y1 >> x2 >> y2;
wall[i] = {x1, x2, y1, y2};
}
mi = k;
dfway(1);
cout << mi << endl;
}
signed main() {
IOS;
int _;
cin >> _;
while(_--) solve();
}