数论:整除、同余
整除、同余
整除的概念:
设 \(a\) , \(b\) 为整数(\(a\ne0\)),如果存在一个整数 \(q\),使得 \(a\times q=b\),则称 \(b\) 能被 \(a\) 整除,记为 \(a\mid b\),且称 \(b\) 是 \(a\) 的倍数,\(a\) 是 \(b\) 的因子。
整除的几个性质:
-
传递性:如果 \(a\mid b\) 且 \(b\mid c\),则 \(a\mid c\).
-
证明:
\(\because \ a\mid b\) , \(b\mid c\)
令 \(b=a\times k_1(k_1\in Z\) , \(k_1\ne0)\)
令 使得 \(c=b\times k_2=a\times k_1\times k_2(k_2\in Z\) , \(k_2\ne0)\)
\(\because \ a\mid (a\times k_1\times k_2)\)
\(\therefore \ a\mid c\)
-
-
\(a\mid b\) 且 \(a\mid c\) 等价于对于任意的整数 \(x\),\(y\),有 \(a\mid (b\times x+c\times y)\).
-
证明:
\(\because \ a\mid b\) , \(a\mid c\)
令 \(b=a\times k_1\) , \(c=a\times k_2(k_1\) , \(k_2\in Z\) , \(k_1\) , \(k_2\ne0)\)
\(\begin{aligned}则 \ b\times x+c\times y&=a\times k_1\times x+a\times k_2 \times y \\ &=a\times(k_1\times x+k_2\times y)\end{aligned}\)
\(\because x,y\in Z\)
\(\therefore \ a\mid [a\times (k_1\times x+k_2\times y)]\)
\(\therefore \ a\mid (b\times x+c\times y)\)
-
-
设 \(m\ne0\),则 \(a\mid b\Rightarrow(m\times a)\mid(m\times b)\).
-
证明:
\(\because \ m\ne0\) , \(a\mid b\)
令 \(b=a\times k(k\in Z\) , \(k\ne0)\)
则 \(m\times b=m\times a\times k\)
\(\because (m\times a)\mid(m\times a\times k)\)
\(\therefore (a\mid b)\Rightarrow (m\times a)\mid(m\times b)\)
-
-
设整数 \(x\) , \(y\) 满足下式:\(a\times x+b\times y=1\) ,且\(a\mid n\),\(b\mid n\),那么 \((a\times b)\mid n\).
-
证明:
\(\because a\mid n\) , \(b\mid n\)
\(\therefore \ a\) , \(b\in Z\) , \(a\) , \(b\ne0\)
\(\because \ a\times x+b\times y=1\)
\(\therefore \ x=1\) , \(y=0\) , \(a=1\) , 或 \(x=0\) , \(y=1\) , \(b=1\)
-
当 \(x=1\) , \(y=0\) , \(a=1\)
\(\because b\mid n\) , \(a=1\)
\(\therefore a\times b=1\times b=b\times n\)
-
当 \(x=0\) , \(y=1\) , \(b=1\)
\(\because \ a\mid n\) , \(b=1\)
\(\therefore \ a\times b=1\times a=a\times n\)
-
-
-
若 \(b=q\times d+c\) ,那么 \(d\mid b\iff d\mid c\).
-
\(d\mid b\Rightarrow d\mid c\):
-
证明:
\(\because \ b=q\times d+c\)
\(\because d\mid b\) , \(d\mid(q\times d)\)
\(\therefore d\mid c\)
-
-
\(d\mid c\Rightarrow d\mid b\):
-
证明:
\(\because b=q\times d+c\)
\(\because \ d\mid(q\times d)\) , \(b\mid c\)
\(\therefore \ d\mid(q\times d+c)\)
\(\therefore \ d\mid b\)
-
-
同余的几个性质:
-
同加性:若 \(a\equiv b\pmod{m}\) 则 \(a+c\equiv b+c\pmod{m}\)
-
证明:
\(\because \ m\mid(a-b)\)
\(\therefore \ m\mid(a-b+c-c)\)
\(\therefore \ m\mid[(a+c)-(b+c)]\)
\(\therefore \ a+c\equiv b+c\pmod{m}\)
-
-
同减性:若 \(a\equiv b\pmod{m}\) 则 \(a-c\equiv b-c\pmod{m}\)
-
证明:
\(\because \ m\mid(a-b)\)
\(\therefore \ m\mid(a-b+c-c)\)
\(\therefore \ m\mid[(a-c)-(b-c)]\)
\(\therefore a-c\equiv b-c\pmod{m}\)
-
-
同乘性:若 \(a\equiv b\pmod{m}\) 则 \(a\times c\equiv b\times c\pmod{m}\)
-
证明:
\(\because \ m\mid(a-b)\)
\(\therefore \ m\mid[(a-b)\times c]\)
\(\therefore \ m\mid(a\times c-b\times c)\)
\(\therefore \ a\times c\equiv b\times c\pmod{m}\)
-
-
同除性:若 \(a\equiv b\pmod{m}\) ,且 \(c\mid a\) , \(c\mid b\) , \(\gcd(c\) , \(m)=1\) ,则 \(a\div c\equiv b\div c\pmod{m}\)
-
证明:
\(\because \ c\mid a\) , \(c\mid b\)
令 \(a=c\times k_1\) , \(b=c\times k_2(k_1\) , \(k_2\in Z\) , \(k_1\) , $k_2\ne0)
\(\begin{aligned}a-b & =c\times k_1-c\times k_2 \\ & =c\times(k_1-k_2)\end{aligned}\)
\(\because \ m\mid(a-b)\)
\(\therefore m\mid[c\times(k_1-k_2)]\)
\(\because \ \gcd(c,m)=1\)
\(\therefore \ m\mid(k_1-k_2)\)
\(\therefore m\mid[(a-b)\div c]\)
\(\to m\mid(a\div c-b\div c)\)
\(\therefore \ a\div c\equiv b\div c\pmod{m}\)
-
-
同幂性:若 \(a\equiv b\pmod{m}\) , \(c>0\) , 则 \(a^c\equiv b^c\pmod{m}\)
-
证明:
\(\because \ a^c-b^c=(a-b)\times(a^{c-1}\times b^0+a^{c-2}\times b^1+a^{c-3}\times b^2+...+a^1\times b^{c-2}+a^0\times b^{c-1})\)
又 \(\because \ m\mid(a-b)\)
\(\therefore \ m\mid(a-b)\times(a^{c-1}\times b^0+a^{c-2}\times b^1+a^{c-3}\times b^2+...+a^1\times b^{c-2}+a^0\times b^{c-1})\)
\(\to m\mid(a^c-b^c)\)
\(\therefore \ a^c\equiv b^c\pmod{m}\)
-
-
若 \(a\bmod p=x\) , \(a\bmod q=x\) ,且 \(p\) , \(q\) 互质,则 \(a\bmod(p\times q)=x\)
-
证明:
\(\because \ a\bmod p=x\) , \(a\bmod q=x\)
令 \(b=a-x\)
\(\because \ p\mid b\)
\(\because \gcd(q,p)=1\)
\(\therefore \ \operatorname{lcm}(p\) , \(q)=p\times q\) , \(q\mid b\)
\(\therefore \ \operatorname{lcm}(p\) , \(q)\mid b\)
\(\to (p\times q)\mid b\)
\(\to a\bmod(p\times q)=x\)
-
数论小常识:
-
若 \(2\) 能整除 \(a\) 的最末位,则 \(2\mid a\)
-
证明:
令 \(a=10\times k_1+k_2(k_1\) , \(k_2\in Z\) , \(\left\vert k_2\right\vert<10)\)\(\because \ 2\mid k_2\) , \(2\mid(10\times k_1)\)
\(\therefore \ 2\mid(10\times k_1+k_2)\)
\(\therefore \ 2\mid a\)
-
-
若 \(4\) 能整除 \(a\) 的末两位,则 \(4\mid a\)
-
证明:
令 \(a=100\times k_1+k_2(k_1\) , \(k_2\in Z\) , \(\left\vert k_2\right\vert<100)\)
\(\because \ 4\mid k_2\) , \(4\mid(100\times k_1)\)
\(\therefore \ 4\mid(100\times k_1+k_2)\)
\(\therefore \ 4\mid a\)
-
-
若 \(8\) 能整除 \(a\) 的末三位,则 \(8\mid a\)
-
证明:
令 \(a=1000\times k_1+k_2(k_1\) , \(k_2\in Z\) , \(\left\vert k_2\right\vert<1000)\)
\(\because \ 8\mid k_2\) , \(8\mid(1000\times k_1)\)
\(\therefore \ 8\mid(1000\times k_1+k_2)\)
\(\therefore \ 8\mid a\)
-
-
若 \(3\) 能整除 \(a\) 的各位数字之和,则 \(3\mid a\)
-
证明:
\(\begin{aligned}令 \ a&=1\times k_0+10\times k_1+100\times k_2+... \\ &=(0+1)\times k_0+(9+1)\times k_1+(99+1)\times k_2+... \\ &=(0\times k_0+9\times k_1+99\times k_2+...)+(k_0+k_1+k_2+...)\end{aligned}\)
\(\because \ 3\mid(0\times k_0+9\times k_1+99\times k_2+...)\) , \(3\mid(k_0+k_1+k_2+...)\)
\(\therefore \ 3\mid(0\times k_0+9\times k_1+99\times k_2+...)+(k_0+k_1+k_2+...)\)
\(\therefore \ 3\mid a\)
-
-
若 \(9\) 能整除 \(a\) 的各位数字之和,则 \(9\mid a\)
-
证明:
\(\begin{aligned}令 \ a&=1\times k_0+10\times k_1+100\times k_2+... \\ &=(0+1)\times k_0+(9+1)\times k_1+(99+1)\times k_2+... \\ &=(0\times k_0+9\times k_1+99\times k_2+...)+(k_0+k_1+k_2+...)\end{aligned}\)
\(\because \ 9\mid(0\times k_0+9\times k_1+99\times k_2+...)\) , \(9\mid(k_0+k_1+k_2+...)\)
\(\therefore \ 9\mid(0\times k_0+9\times k_1+99\times k_2+...)+(k_0+k_1+k_2+...)\)
\(\therefore \ 9\mid a\)
-
-
若 \(11\) 能整除 \(a\) 的偶数位数字之和与奇数位数字之和的差,则 \(11\mid a\)
-
证明:
\(\begin{aligned}令 \ a&=1\times k_0+10\times k_1+100\times k_2+... \\ &=(0+1)\times k_0+(11-1)\times k_1+(99+1)\times k_2+... \\ &=(0\times k_0+11\times k_1+99\times k_2+...)+(k_0-k_1+k_2-...)\end{aligned}\)
\(\because \ 11\mid(0\times k_0+11\times k_1+99\times k_2+...)\) , \(311\mid(k_0-k_1+k_2-...)\)
\(\therefore \ 11\mid(0\times k_0+11\times k_1+99\times k_2+...)+(k_0-k_1+k_2-...)\)
\(\therefore \ 11\mid a\)
-
-
能被 \(7\) 、 \(11\) 、 \(13\)整除的数的特征是:这个数的末三位与末三位以前的数字所组成数之差能被 \(7\) 、 \(11\) 、 \(13\) 整除.
-
证明:
令 \(a=\overline{k_1k_2k_3...k_n}\)
\(\because \ 1001\mid(\overline{k_{n-2}k_{n-1}k_n}\times 1001)\)
\(\therefore \ 1001\mid\overline{k_{n-2}k_{n-1}k_nk_{n-2}k_{n-1}k_n}\)
\(\because \ 1001\mid a\) , \(1001\mid\overline{k_{n-2}k_{n-1}k_nk_{n-2}k_{n-1}k_n}\)
\(\therefore \ 1001\mid (a-\overline{k_{n-2}k_{n-1}k_nk_{n-2}k_{n-1}k_n})\)
\(\therefore \ 1001\mid(\overline{k_1k_2k_3...k_{n-3}}-\overline{k_{n-2}k_{n-1}k_n})\)
-
—— · EOF · ——
真的什么也不剩啦 😖