数论:整除、同余

整除、同余


整除的概念:

\(a\) , \(b\) 为整数(\(a\ne0\)),如果存在一个整数 \(q\),使得 \(a\times q=b\),则称 \(b\) 能被 \(a\) 整除,记为 \(a\mid b\),且称 \(b\)\(a\) 的倍数,\(a\)\(b\) 的因子。

整除的几个性质:
  1. 传递性:如果 \(a\mid b\)\(b\mid c\),则 \(a\mid c\).

    • 证明:

      \(\because \ a\mid b\) , \(b\mid c\)

      \(b=a\times k_1(k_1\in Z\) , \(k_1\ne0)\)

      令 使得 \(c=b\times k_2=a\times k_1\times k_2(k_2\in Z\) , \(k_2\ne0)\)

      \(\because \ a\mid (a\times k_1\times k_2)\)

      \(\therefore \ a\mid c\)

  2. \(a\mid b\)\(a\mid c\) 等价于对于任意的整数 \(x\)\(y\),有 \(a\mid (b\times x+c\times y)\).

    • 证明:

      \(\because \ a\mid b\) , \(a\mid c\)

      \(b=a\times k_1\) , \(c=a\times k_2(k_1\) , \(k_2\in Z\) , \(k_1\) , \(k_2\ne0)\)

      \(\begin{aligned}则 \ b\times x+c\times y&=a\times k_1\times x+a\times k_2 \times y \\ &=a\times(k_1\times x+k_2\times y)\end{aligned}\)

      \(\because x,y\in Z\)

      \(\therefore \ a\mid [a\times (k_1\times x+k_2\times y)]\)

      \(\therefore \ a\mid (b\times x+c\times y)\)

  3. \(m\ne0\),则 \(a\mid b\Rightarrow(m\times a)\mid(m\times b)\).

    • 证明:

      \(\because \ m\ne0\) , \(a\mid b\)

      \(b=a\times k(k\in Z\) , \(k\ne0)\)

      \(m\times b=m\times a\times k\)

      \(\because (m\times a)\mid(m\times a\times k)\)

      \(\therefore (a\mid b)\Rightarrow (m\times a)\mid(m\times b)\)

  4. 设整数 \(x\) , \(y\) 满足下式:\(a\times x+b\times y=1\) ,且\(a\mid n\)\(b\mid n\),那么 \((a\times b)\mid n\).

    • 证明:

      \(\because a\mid n\) , \(b\mid n\)

      \(\therefore \ a\) , \(b\in Z\) , \(a\) , \(b\ne0\)

      \(\because \ a\times x+b\times y=1\)

      \(\therefore \ x=1\) , \(y=0\) , \(a=1\) , 或 \(x=0\) , \(y=1\) , \(b=1\)

      • \(x=1\) , \(y=0\) , \(a=1\)

        \(\because b\mid n\) , \(a=1\)

        \(\therefore a\times b=1\times b=b\times n\)

      • \(x=0\) , \(y=1\) , \(b=1\)

        \(\because \ a\mid n\) , \(b=1\)

        \(\therefore \ a\times b=1\times a=a\times n\)

  5. \(b=q\times d+c\) ,那么 \(d\mid b\iff d\mid c\).

    • \(d\mid b\Rightarrow d\mid c\)

      • 证明:

        \(\because \ b=q\times d+c\)

        \(\because d\mid b\) , \(d\mid(q\times d)\)

        \(\therefore d\mid c\)

    • \(d\mid c\Rightarrow d\mid b\):

      • 证明:

        \(\because b=q\times d+c\)

        \(\because \ d\mid(q\times d)\) , \(b\mid c\)

        \(\therefore \ d\mid(q\times d+c)\)

        \(\therefore \ d\mid b\)

同余的几个性质:
  1. 同加性:若 \(a\equiv b\pmod{m}\)\(a+c\equiv b+c\pmod{m}\)

    • 证明:

      \(\because \ m\mid(a-b)\)

      \(\therefore \ m\mid(a-b+c-c)\)

      \(\therefore \ m\mid[(a+c)-(b+c)]\)

      \(\therefore \ a+c\equiv b+c\pmod{m}\)

  2. 同减性:若 \(a\equiv b\pmod{m}\)\(a-c\equiv b-c\pmod{m}\)

    • 证明:

      \(\because \ m\mid(a-b)\)

      \(\therefore \ m\mid(a-b+c-c)\)

      \(\therefore \ m\mid[(a-c)-(b-c)]\)

      \(\therefore a-c\equiv b-c\pmod{m}\)

  3. 同乘性:若 \(a\equiv b\pmod{m}\)\(a\times c\equiv b\times c\pmod{m}\)

    • 证明:

      \(\because \ m\mid(a-b)\)

      \(\therefore \ m\mid[(a-b)\times c]\)

      \(\therefore \ m\mid(a\times c-b\times c)\)

      \(\therefore \ a\times c\equiv b\times c\pmod{m}\)

  4. 同除性:若 \(a\equiv b\pmod{m}\) ,且 \(c\mid a\) , \(c\mid b\) , \(\gcd(c\) , \(m)=1\) ,则 \(a\div c\equiv b\div c\pmod{m}\)

    • 证明:

      \(\because \ c\mid a\) , \(c\mid b\)

      \(a=c\times k_1\) , \(b=c\times k_2(k_1\) , \(k_2\in Z\) , \(k_1\) , $k_2\ne0)

      \(\begin{aligned}a-b & =c\times k_1-c\times k_2 \\ & =c\times(k_1-k_2)\end{aligned}\)

      \(\because \ m\mid(a-b)\)

      \(\therefore m\mid[c\times(k_1-k_2)]\)

      \(\because \ \gcd(c,m)=1\)

      \(\therefore \ m\mid(k_1-k_2)\)

      \(\therefore m\mid[(a-b)\div c]\)

      \(\to m\mid(a\div c-b\div c)\)

      \(\therefore \ a\div c\equiv b\div c\pmod{m}\)

  5. 同幂性:若 \(a\equiv b\pmod{m}\) , \(c>0\) , 则 \(a^c\equiv b^c\pmod{m}\)

    • 证明:

      \(\because \ a^c-b^c=(a-b)\times(a^{c-1}\times b^0+a^{c-2}\times b^1+a^{c-3}\times b^2+...+a^1\times b^{c-2}+a^0\times b^{c-1})\)

      \(\because \ m\mid(a-b)\)

      \(\therefore \ m\mid(a-b)\times(a^{c-1}\times b^0+a^{c-2}\times b^1+a^{c-3}\times b^2+...+a^1\times b^{c-2}+a^0\times b^{c-1})\)

      \(\to m\mid(a^c-b^c)\)

      \(\therefore \ a^c\equiv b^c\pmod{m}\)

  6. \(a\bmod p=x\) , \(a\bmod q=x\) ,且 \(p\) , \(q\) 互质,则 \(a\bmod(p\times q)=x\)

    • 证明:

      \(\because \ a\bmod p=x\) , \(a\bmod q=x\)

      \(b=a-x\)

      \(\because \ p\mid b\)

      \(\because \gcd(q,p)=1\)

      \(\therefore \ \operatorname{lcm}(p\) , \(q)=p\times q\) , \(q\mid b\)

      \(\therefore \ \operatorname{lcm}(p\) , \(q)\mid b\)

      \(\to (p\times q)\mid b\)

      \(\to a\bmod(p\times q)=x\)

数论小常识:

  1. \(2\) 能整除 \(a\) 的最末位,则 \(2\mid a\)

    • 证明:
      \(a=10\times k_1+k_2(k_1\) , \(k_2\in Z\) , \(\left\vert k_2\right\vert<10)\)

      \(\because \ 2\mid k_2\) , \(2\mid(10\times k_1)\)

      \(\therefore \ 2\mid(10\times k_1+k_2)\)

      \(\therefore \ 2\mid a\)

  2. \(4\) 能整除 \(a\) 的末两位,则 \(4\mid a\)

    • 证明:

      \(a=100\times k_1+k_2(k_1\) , \(k_2\in Z\) , \(\left\vert k_2\right\vert<100)\)

      \(\because \ 4\mid k_2\) , \(4\mid(100\times k_1)\)

      \(\therefore \ 4\mid(100\times k_1+k_2)\)

      \(\therefore \ 4\mid a\)

  3. \(8\) 能整除 \(a\) 的末三位,则 \(8\mid a\)

    • 证明:

      \(a=1000\times k_1+k_2(k_1\) , \(k_2\in Z\) , \(\left\vert k_2\right\vert<1000)\)

      \(\because \ 8\mid k_2\) , \(8\mid(1000\times k_1)\)

      \(\therefore \ 8\mid(1000\times k_1+k_2)\)

      \(\therefore \ 8\mid a\)

  4. \(3\) 能整除 \(a\) 的各位数字之和,则 \(3\mid a\)

    • 证明:

      \(\begin{aligned}令 \ a&=1\times k_0+10\times k_1+100\times k_2+... \\ &=(0+1)\times k_0+(9+1)\times k_1+(99+1)\times k_2+... \\ &=(0\times k_0+9\times k_1+99\times k_2+...)+(k_0+k_1+k_2+...)\end{aligned}\)

      \(\because \ 3\mid(0\times k_0+9\times k_1+99\times k_2+...)\) , \(3\mid(k_0+k_1+k_2+...)\)

      \(\therefore \ 3\mid(0\times k_0+9\times k_1+99\times k_2+...)+(k_0+k_1+k_2+...)\)

      \(\therefore \ 3\mid a\)

  5. \(9\) 能整除 \(a\) 的各位数字之和,则 \(9\mid a\)

    • 证明:

      \(\begin{aligned}令 \ a&=1\times k_0+10\times k_1+100\times k_2+... \\ &=(0+1)\times k_0+(9+1)\times k_1+(99+1)\times k_2+... \\ &=(0\times k_0+9\times k_1+99\times k_2+...)+(k_0+k_1+k_2+...)\end{aligned}\)

      \(\because \ 9\mid(0\times k_0+9\times k_1+99\times k_2+...)\) , \(9\mid(k_0+k_1+k_2+...)\)

      \(\therefore \ 9\mid(0\times k_0+9\times k_1+99\times k_2+...)+(k_0+k_1+k_2+...)\)

      \(\therefore \ 9\mid a\)

  6. \(11\) 能整除 \(a\) 的偶数位数字之和与奇数位数字之和的差,则 \(11\mid a\)

    • 证明:

      \(\begin{aligned}令 \ a&=1\times k_0+10\times k_1+100\times k_2+... \\ &=(0+1)\times k_0+(11-1)\times k_1+(99+1)\times k_2+... \\ &=(0\times k_0+11\times k_1+99\times k_2+...)+(k_0-k_1+k_2-...)\end{aligned}\)

      \(\because \ 11\mid(0\times k_0+11\times k_1+99\times k_2+...)\) , \(311\mid(k_0-k_1+k_2-...)\)

      \(\therefore \ 11\mid(0\times k_0+11\times k_1+99\times k_2+...)+(k_0-k_1+k_2-...)\)

      \(\therefore \ 11\mid a\)

  7. 能被 \(7\)\(11\)\(13\)整除的数的特征是:这个数的末三位与末三位以前的数字所组成数之差能被 \(7\)\(11\)\(13\) 整除.

    • 证明:

      \(a=\overline{k_1k_2k_3...k_n}\)

      \(\because \ 1001\mid(\overline{k_{n-2}k_{n-1}k_n}\times 1001)\)

      \(\therefore \ 1001\mid\overline{k_{n-2}k_{n-1}k_nk_{n-2}k_{n-1}k_n}\)

      \(\because \ 1001\mid a\) , \(1001\mid\overline{k_{n-2}k_{n-1}k_nk_{n-2}k_{n-1}k_n}\)

      \(\therefore \ 1001\mid (a-\overline{k_{n-2}k_{n-1}k_nk_{n-2}k_{n-1}k_n})\)

      \(\therefore \ 1001\mid(\overline{k_1k_2k_3...k_{n-3}}-\overline{k_{n-2}k_{n-1}k_n})\)

posted @ 2020-11-03 19:29  XSC062  阅读(451)  评论(0编辑  收藏  举报