计算几何模板
/** * 二维ACM计算几何模板 * 注意变量类型更改和EPS * #include <cmath> * #include <cstdio> * By OWenT */ const double eps = 1e-8; const double pi = std::acos(-1.0); //点 class point { public: double x, y; point() {}; point(double x, double y):x(x),y(y) {}; static int xmult(const point &ps, const point &pe, const point &po) { return (ps.x - po.x) * (pe.y - po.y) - (pe.x - po.x) * (ps.y - po.y); } //相对原点的差乘结果,参数:点[_Off] //即由原点和这两个点组成的平行四边形面积 double operator *(const point &_Off) const { return x * _Off.y - y * _Off.x; } //相对偏移 point operator - (const point &_Off) const { return point(x - _Off.x, y - _Off.y); } //点位置相同(double类型) bool operator == (const point &_Off) const { return std::fabs(_Off.x - x) < eps && std::fabs(_Off.y - y) < eps; } //点位置不同(double类型) bool operator != (const point &_Off) const { return ((*this) == _Off) == false; } //两点间距离的平方 double dis2(const point &_Off) const { return (x - _Off.x) * (x - _Off.x) + (y - _Off.y) * (y - _Off.y); } //两点间距离 double dis(const point &_Off) const { return std::sqrt((x - _Off.x) * (x - _Off.x) + (y - _Off.y) * (y - _Off.y)); } }; //两点表示的向量 class pVector { public: point s, e;//两点表示,起点[s],终点[e] double a, b, c;//一般式,ax+by+c=0 pVector() {} pVector(const point &s, const point &e):s(s),e(e) {} //向量与点的叉乘,参数:点[_Off] //[点相对向量位置判断] double operator *(const point &_Off) const { return (_Off.y - s.y) * (e.x - s.x) - (_Off.x - s.x) * (e.y - s.y); } //向量与向量的叉乘,参数:向量[_Off] double operator *(const pVector &_Off) const { return (e.x - s.x) * (_Off.e.y - _Off.s.y) - (e.y - s.y) * (_Off.e.x - _Off.s.x); } //从两点表示转换为一般表示 bool pton() { a = s.y - e.y; b = e.x - s.x; c = s.x * e.y - s.y * e.x; return true; } //-----------点和直线(向量)----------- //点在向量左边(右边的小于号改成大于号即可,在对应直线上则加上=号) //参数:点[_Off],向量[_Ori] friend bool operator<(const point &_Off, const pVector &_Ori) { return (_Ori.e.y - _Ori.s.y) * (_Off.x - _Ori.s.x) < (_Off.y - _Ori.s.y) * (_Ori.e.x - _Ori.s.x); } //点在直线上,参数:点[_Off] bool lhas(const point &_Off) const { return std::fabs((*this) * _Off) < eps; } //点在线段上,参数:点[_Off] bool shas(const point &_Off) const { return lhas(_Off) && _Off.x - std::min(s.x, e.x) > -eps && _Off.x - std::max(s.x, e.x) < eps && _Off.y - std::min(s.y, e.y) > -eps && _Off.y - std::max(s.y, e.y) < eps; } //点到直线/线段的距离 //参数: 点[_Off], 是否是线段[isSegment](默认为直线) double dis(const point &_Off, bool isSegment = false) { //化为一般式 pton(); //到直线垂足的距离 double td = (a * _Off.x + b * _Off.y + c) / sqrt(a * a + b * b); //如果是线段判断垂足 if(isSegment) { double xp = (b * b * _Off.x - a * b * _Off.y - a * c) / ( a * a + b * b); double yp = (-a * b * _Off.x + a * a * _Off.y - b * c) / (a * a + b * b); double xb = std::max(s.x, e.x); double yb = std::max(s.y, e.y); double xs = s.x + e.x - xb; double ys = s.y + e.y - yb; if(xp > xb + eps || xp < xs - eps || yp > yb + eps || yp < ys - eps) td = std::min(_Off.dis(s), _Off.dis(e)); } return fabs(td); } //关于直线对称的点 point mirror(const point &_Off) const { //注意先转为一般式 point ret; double d = a * a + b * b; ret.x = (b * b * _Off.x - a * a * _Off.x - 2 * a * b * _Off.y - 2 * a * c) / d; ret.y = (a * a * _Off.y - b * b * _Off.y - 2 * a * b * _Off.x - 2 * b * c) / d; return ret; } //计算两点的中垂线 static pVector ppline(const point &_a, const point &_b) { pVector ret; ret.s.x = (_a.x + _b.x) / 2; ret.s.y = (_a.y + _b.y) / 2; //一般式 ret.a = _b.x - _a.x; ret.b = _b.y - _a.y; ret.c = (_a.y - _b.y) * ret.s.y + (_a.x - _b.x) * ret.s.x; //两点式 if(std::fabs(ret.a) > eps) { ret.e.y = 0.0; ret.e.x = - ret.c / ret.a; if(ret.e == ret. s) { ret.e.y = 1e10; ret.e.x = - (ret.c - ret.b * ret.e.y) / ret.a; } } else { ret.e.x = 0.0; ret.e.y = - ret.c / ret.b; if(ret.e == ret. s) { ret.e.x = 1e10; ret.e.y = - (ret.c - ret.a * ret.e.x) / ret.b; } } return ret; } //------------直线和直线(向量)------------- //直线重合,参数:直线向量[_Off] bool equal(const pVector &_Off) const { return lhas(_Off.e) && lhas(_Off.s); } //直线平行,参数:直线向量[_Off] bool parallel(const pVector &_Off) const { return std::fabs((*this) * _Off) < eps; } //两直线交点,参数:目标直线[_Off] point crossLPt(pVector _Off) { //注意先判断平行和重合 point ret = s; double t = ((s.x - _Off.s.x) * (_Off.s.y - _Off.e.y) - (s.y - _Off.s.y) * (_Off.s.x - _Off.e.x)) / ((s.x - e.x) * (_Off.s.y - _Off.e.y) - (s.y - e.y) * (_Off.s.x - _Off.e.x)); ret.x += (e.x - s.x) * t; ret.y += (e.y - s.y) * t; return ret; } //------------线段和直线(向量)---------- //线段和直线交 //参数:线段[_Off] bool crossSL(const pVector &_Off) const { double rs = (*this) * _Off.s; double re = (*this) * _Off.e; return rs * re < eps; } //------------线段和线段(向量)---------- //判断线段是否相交(注意添加eps),参数:线段[_Off] bool isCrossSS(const pVector &_Off) const { //1.快速排斥试验判断以两条线段为对角线的两个矩形是否相交 //2.跨立试验(等于0时端点重合) return ( (std::max(s.x, e.x) >= std::min(_Off.s.x, _Off.e.x)) && (std::max(_Off.s.x, _Off.e.x) >= std::min(s.x, e.x)) && (std::max(s.y, e.y) >= std::min(_Off.s.y, _Off.e.y)) && (std::max(_Off.s.y, _Off.e.y) >= std::min(s.y, e.y)) && ((pVector(_Off.s, s) * _Off) * (_Off * pVector(_Off.s, e)) >= 0.0) && ((pVector(s, _Off.s) * (*this)) * ((*this) * pVector(s, _Off.e)) >= 0.0) ); } }; class polygon { public: const static long maxpn = 100; point pt[maxpn];//点(顺时针或逆时针) long n;//点的个数 point& operator[](int _p) { return pt[_p]; } //求多边形面积,多边形内点必须顺时针或逆时针 double area() const { double ans = 0.0; int i; for(i = 0; i < n; i ++) { int nt = (i + 1) % n; ans += pt[i].x * pt[nt].y - pt[nt].x * pt[i].y; } return std::fabs(ans / 2.0); } //求多边形重心,多边形内点必须顺时针或逆时针 point gravity() const { point ans; ans.x = ans.y = 0.0; int i; double area = 0.0; for(i = 0; i < n; i ++) { int nt = (i + 1) % n; double tp = pt[i].x * pt[nt].y - pt[nt].x * pt[i].y; area += tp; ans.x += tp * (pt[i].x + pt[nt].x); ans.y += tp * (pt[i].y + pt[nt].y); } ans.x /= 3 * area; ans.y /= 3 * area; return ans; } //判断点在凸多边形内,参数:点[_Off] bool chas(const point &_Off) const { double tp = 0, np; int i; for(i = 0; i < n; i ++) { np = pVector(pt[i], pt[(i + 1) % n]) * _Off; if(tp * np < -eps) return false; tp = (std::fabs(np) > eps)?np: tp; } return true; } //判断点是否在任意多边形内[射线法],O(n) bool ahas(const point &_Off) const { int ret = 0; double infv = 1e-10;//坐标系最大范围 pVector l = pVector(_Off, point( -infv ,_Off.y)); for(int i = 0; i < n; i ++) { pVector ln = pVector(pt[i], pt[(i + 1) % n]); if(fabs(ln.s.y - ln.e.y) > eps) { point tp = (ln.s.y > ln.e.y)? ln.s: ln.e; if(fabs(tp.y - _Off.y) < eps && tp.x < _Off.x + eps) ret ++; } else if(ln.isCrossSS(l)) ret ++; } return (ret % 2 == 1); } //凸多边形被直线分割,参数:直线[_Off] polygon split(pVector _Off) { //注意确保多边形能被分割 polygon ret; point spt[2]; double tp = 0.0, np; bool flag = true; int i, pn = 0, spn = 0; for(i = 0; i < n; i ++) { if(flag) pt[pn ++] = pt[i]; else ret.pt[ret.n ++] = pt[i]; np = _Off * pt[(i + 1) % n]; if(tp * np < -eps) { flag = !flag; spt[spn ++] = _Off.crossLPt(pVector(pt[i], pt[(i + 1) % n])); } tp = (std::fabs(np) > eps)?np: tp; } ret.pt[ret.n ++] = spt[0]; ret.pt[ret.n ++] = spt[1]; n = pn; return ret; } //-------------凸包------------- //Graham扫描法,复杂度O(nlg(n)),结果为逆时针 //#include <algorithm> static bool graham_cmp(const point &l, const point &r)//凸包排序函数 { return l.y < r.y || (l.y == r.y && l.x < r.x); } polygon& graham(point _p[], int _n) { int i, len; std::sort(_p, _p + _n, polygon::graham_cmp); n = 1; pt[0] = _p[0], pt[1] = _p[1]; for(i = 2; i < _n; i ++) { while(n && point::xmult(_p[i], pt[n], pt[n - 1]) >= 0) n --; pt[++ n] = _p[i]; } len = n; pt[++ n] = _p[_n - 2]; for(i = _n - 3; i >= 0; i --) { while(n != len && point::xmult(_p[i], pt[n], pt[n - 1]) >= 0) n --; pt[++ n] = _p[i]; } return (*this); } //凸包旋转卡壳(注意点必须顺时针或逆时针排列) //返回值凸包直径的平方(最远两点距离的平方) double rotating_calipers() { int i = 1; double ret = 0.0; pt[n] = pt[0]; for(int j = 0; j < n; j ++) { while(fabs(point::xmult(pt[j], pt[j + 1], pt[i + 1])) > fabs(point::xmult(pt[j], pt[j + 1], pt[i])) + eps) i = (i + 1) % n; //pt[i]和pt[j],pt[i + 1]和pt[j + 1]可能是对踵点 ret = std::max(ret, std::max(pt[i].dis(pt[j]), pt[i + 1].dis(pt[j + 1]))); } return ret; } //凸包旋转卡壳(注意点必须逆时针排列) //返回值两凸包的最短距离 double rotating_calipers(polygon &_Off) { int i = 0; double ret = 1e10;//inf pt[n] = pt[0]; _Off.pt[_Off.n] = _Off.pt[0]; //注意凸包必须逆时针排列且pt[0]是左下角点的位置 while(_Off.pt[i + 1].y > _Off.pt[i].y) i = (i + 1) % _Off.n; for(int j = 0; j < n; j ++) { double tp; //逆时针时为 >,顺时针则相反 while((tp = point::xmult(pt[j], pt[j + 1], _Off.pt[i + 1]) - point::xmult( pt[j], pt[j + 1], _Off.pt[i])) > eps) i = (i + 1) % _Off.n; //(pt[i],pt[i+1])和(_Off.pt[j],_Off.pt[j + 1])可能是最近线段 ret = std::min(ret, pVector(pt[j], pt[j + 1]).dis(_Off.pt[i], true)); ret = std::min(ret, pVector(_Off.pt[i], _Off.pt[i + 1]).dis(pt[j + 1], true)); if(tp > -eps)//如果不考虑TLE问题最好不要加这个判断 { ret = std::min(ret, pVector(pt[j], pt[j + 1]).dis(_Off.pt[i + 1], true)); ret = std::min(ret, pVector(_Off.pt[i], _Off.pt[i + 1]).dis(pt[j], true)); } } return ret; } //-----------半平面交------------- //复杂度:O(nlog2(n)) //#include <algorithm> //半平面计算极角函数[如果考虑效率可以用成员变量记录] static double hpc_pa(const pVector &_Off) { return atan2(_Off.e.y - _Off.s.y, _Off.e.x - _Off.s.x); } //半平面交排序函数[优先顺序: 1.极角 2.前面的直线在后面的左边] static bool hpc_cmp(const pVector &l, const pVector &r) { double lp = hpc_pa(l), rp = hpc_pa(r); if(fabs(lp - rp) > eps) return lp < rp; return point::xmult(l.s, r.e, r.s) < 0.0; } //用于计算的双端队列 pVector dequeue[maxpn]; //获取半平面交的多边形(多边形的核) //参数:向量集合[l],向量数量[ln];(半平面方向在向量左边) //函数运行后如果n[即返回多边形的点数量]为0则不存在半平面交的多边形(不存在区域或区域面积无穷大) polygon& halfPanelCross(pVector _Off[], int ln) { int i, tn; n = 0; std::sort(_Off, _Off + ln, hpc_cmp); //平面在向量左边的筛选 for(i = tn = 1; i < ln; i ++) if(fabs(hpc_pa(_Off[i]) - hpc_pa(_Off[i - 1])) > eps) _Off[tn ++] = _Off[i]; ln = tn; int bot = 0, top = 1; dequeue[0] = _Off[0]; dequeue[1] = _Off[1]; for(i = 2; i < ln; i ++) { if(dequeue[top].parallel(dequeue[top - 1]) || dequeue[bot].parallel(dequeue[bot + 1])) return (*this); while(bot < top && point::xmult(dequeue[top].crossLPt(dequeue[top - 1]), _Off[i].e, _Off[i].s) > eps) top --; while(bot < top && point::xmult(dequeue[bot].crossLPt(dequeue[bot + 1]), _Off[i].e, _Off[i].s) > eps) bot ++; dequeue[++ top] = _Off[i]; } while(bot < top && point::xmult(dequeue[top].crossLPt(dequeue[top - 1]), dequeue[bot].e, dequeue[bot].s) > eps) top --; while(bot < top && point::xmult(dequeue[bot].crossLPt(dequeue[bot + 1]), dequeue[top].e, dequeue[top].s) > eps) bot ++; //计算交点(注意不同直线形成的交点可能重合) if(top <= bot + 1) return (*this); for(i = bot; i < top; i ++) pt[n ++] = dequeue[i].crossLPt(dequeue[i + 1]); if(bot < top + 1) pt[n ++] = dequeue[bot].crossLPt(dequeue[top]); return (*this); } }; class circle { public: point c;//圆心 double r;//半径 double db, de;//圆弧度数起点, 圆弧度数终点(逆时针0-360) //-------圆--------- //判断圆在多边形内 bool inside(const polygon &_Off) const { if(_Off.ahas(c) == false) return false; for(int i = 0; i < _Off.n; i ++) { pVector l = pVector(_Off.pt[i], _Off.pt[(i + 1) % _Off.n]); if(l.dis(c, true) < r - eps) return false; } return true; } //判断多边形在圆内(线段和折线类似) bool has(const polygon &_Off) const { for(int i = 0; i < _Off.n; i ++) if(_Off.pt[i].dis2(c) > r * r - eps) return false; return true; } //-------圆弧------- //圆被其他圆截得的圆弧,参数:圆[_Off] circle operator-(circle &_Off) const { //注意圆必须相交,圆心不能重合 double d2 = c.dis2(_Off.c); double d = c.dis(_Off.c); double ans = std::acos((d2 + r * r - _Off.r * _Off.r) / (2 * d * r)); point py = _Off.c - c; double oans = std::atan2(py.y, py.x); circle res; res.c = c; res.r = r; res.db = oans + ans; res.de = oans - ans + 2 * pi; return res; } //圆被其他圆截得的圆弧,参数:圆[_Off] circle operator+(circle &_Off) const { //注意圆必须相交,圆心不能重合 double d2 = c.dis2(_Off.c); double d = c.dis(_Off.c); double ans = std::acos((d2 + r * r - _Off.r * _Off.r) / (2 * d * r)); point py = _Off.c - c; double oans = std::atan2(py.y, py.x); circle res; res.c = c; res.r = r; res.db = oans - ans; res.de = oans + ans; return res; } //过圆外一点的两条切线 //参数:点[_Off](必须在圆外),返回:两条切线(切线的s点为_Off,e点为切点) std::pair<pVector, pVector> tangent(const point &_Off) const { double d = c.dis(_Off); //计算角度偏移的方式 double angp = std::acos(r / d), ango = std::atan2(_Off.y - c.y, _Off.x - c.x); point pl = point(c.x + r * std::cos(ango + angp), c.y + r * std::sin(ango + angp)), pr = point(c.x + r * std::cos(ango - angp), c.y + r * std::sin(ango - angp)); return std::make_pair(pVector(_Off, pl), pVector(_Off, pr)); } //计算直线和圆的两个交点 //参数:直线[_Off](两点式),返回两个交点,注意直线必须和圆有两个交点 std::pair<point, point> cross(pVector _Off) const { _Off.pton(); //到直线垂足的距离 double td = fabs(_Off.a * c.x + _Off.b * c.y + _Off.c) / sqrt(_Off.a * _Off.a + _Off.b * _Off.b); //计算垂足坐标 double xp = (_Off.b * _Off.b * c.x - _Off.a * _Off.b * c.y - _Off.a * _Off.c) / ( _Off.a * _Off.a + _Off.b * _Off.b); double yp = (- _Off.a * _Off.b * c.x + _Off.a * _Off.a * c.y - _Off.b * _Off.c) / (_Off.a * _Off.a + _Off.b * _Off.b); double ango = std::atan2(yp - c.y, xp - c.x); double angp = std::acos(td / r); return std::make_pair(point(c.x + r * std::cos(ango + angp), c.y + r * std::sin(ango + angp)), point(c.x + r * std::cos(ango - angp), c.y + r * std::sin(ango - angp))); } }; class triangle { public: point a, b, c;//顶点 triangle() {} triangle(point a, point b, point c): a(a), b(b), c(c) {} //计算三角形面积 double area() { return fabs(point::xmult(a, b, c)) / 2.0; } //计算三角形外心 //返回:外接圆圆心 point circumcenter() { pVector u,v; u.s.x = (a.x + b.x) / 2; u.s.y = (a.y + b.y) / 2; u.e.x = u.s.x - a.y + b.y; u.e.y = u.s.y + a.x - b.x; v.s.x = (a.x + c.x) / 2; v.s.y = (a.y + c.y) / 2; v.e.x = v.s.x - a.y + c.y; v.e.y = v.s.y + a.x - c.x; return u.crossLPt(v); } //计算三角形内心 //返回:内接圆圆心 point incenter() { pVector u, v; double m, n; u.s = a; m = atan2(b.y - a.y, b.x - a.x); n = atan2(c.y - a.y, c.x - a.x); u.e.x = u.s.x + cos((m + n) / 2); u.e.y = u.s.y + sin((m + n) / 2); v.s = b; m = atan2(a.y - b.y, a.x - b.x); n = atan2(c.y - b.y, c.x - b.x); v.e.x = v.s.x + cos((m + n) / 2); v.e.y = v.s.y + sin((m + n) / 2); return u.crossLPt(v); } //计算三角形垂心 //返回:高的交点 point perpencenter() { pVector u,v; u.s = c; u.e.x = u.s.x - a.y + b.y; u.e.y = u.s.y + a.x - b.x; v.s = b; v.e.x = v.s.x - a.y + c.y; v.e.y = v.s.y + a.x - c.x; return u.crossLPt(v); } //计算三角形重心 //返回:重心 //到三角形三顶点距离的平方和最小的点 //三角形内到三边距离之积最大的点 point barycenter() { pVector u,v; u.s.x = (a.x + b.x) / 2; u.s.y = (a.y + b.y) / 2; u.e = c; v.s.x = (a.x + c.x) / 2; v.s.y = (a.y + c.y) / 2; v.e = b; return u.crossLPt(v); } //计算三角形费马点 //返回:到三角形三顶点距离之和最小的点 point fermentpoint() { point u, v; double step = fabs(a.x) + fabs(a.y) + fabs(b.x) + fabs(b.y) + fabs(c.x) + fabs(c.y); int i, j, k; u.x = (a.x + b.x + c.x) / 3; u.y = (a.y + b.y + c.y) / 3; while (step > eps) { for (k = 0; k < 10; step /= 2, k ++) { for (i = -1; i <= 1; i ++) { for (j =- 1; j <= 1; j ++) { v.x = u.x + step * i; v.y = u.y + step * j; if (u.dis(a) + u.dis(b) + u.dis(c) > v.dis(a) + v.dis(b) + v.dis(c)) u = v; } } } } return u; } };