import torch
from torch.utils.data import Dataset, DataLoader
import numpy as np
import torch.nn.functional as F
class DiabetesDataset(Dataset):
def __init__(self, filepath):
xy = np.loadtxt(filepath, delimiter=",", dtype=np.float32)
self.x_data = torch.from_numpy(xy[:, :-1])
self.y_data = torch.from_numpy(xy[:, [-1]])
self.len = self.x_data.shape[0]
def __getitem__(self, index):
data = self.x_data[index]
label = self.y_data[index]
return data, label
def __len__(self):
return self.len
dataset = DiabetesDataset("filepath")
train_loader = DataLoader(dataset=dataset,
batch_size=32,
shuffle=True,
num_workers=2, )
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
self.linear1 = torch.nn.Linear(8, 6)
self.linear2 = torch.nn.Linear(6, 4)
self.linear3 = torch.nn.Linear(4, 1)
def forward(self, x):
x = F.relu(self.linear1(x))
x = F.relu(self.linear2(x))
x = F.sigmoid(self.linear3(x))
return x
model = Model()
optimizer = optim.SGD(model.parameters(), lr=0.01)
loss_fn = torch.nn.BCELoss()
def train():
loss = 0
for epoch in range(100):
for i, (x, y) in enumerate(train_loader):
y_pred = model(x)
loss = loss_fn(y_pred, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print("Epoch:", epoch, "loss=", loss.item())
if __name__ == '__main__':
train()
from torch.utils.data import Dataset
import os
import cv2 as cv
class MyData(Dataset): # 继承Dataset
def __init__(self, root_dir, label_dir):
self.root_dir = root_dir # 定义根目录
self.label_dir = label_dir # 定义标签目录
self.path = os.path.join(self.root_dir, self.label_dir) # 定义路径
self.img_path = os.listdir(self.path) # 定义图片路径
def __getitem__(self, index):
img_name = self.img_path[index] # 获取每一张图片的名称
img_item_path = os.path.join(self.root_dir, self.label_dir, img_name) # 将存放图片的路径进行拼接
img = cv.imread(img_item_path) # 读取路径中的图片
label = self.label_dir # 图片的标签
return img, label
def __len__(self):
return len(self.img_path) # 获取有多少张图片
root_dir = "dataset/val" # 根目录
ants_label_dir = "ants" # 存放蚂蚁的目录
bees_label_dir = "bees" # 存放蜜蜂的目录
ants_dataset = MyData(root_dir, ants_label_dir) # 实例化 ants
bees_label_dir = MyData(root_dir, bees_label_dir) # 实例化 bees
print("ants_dataset:", len(ants_dataset))
print("bees_label_dir:", len(bees_label_dir))
train_dataset = ants_dataset + bees_label_dir # 将两个数据集存放到一起
print("train_dataset:", len(train_dataset))
img1, label1 = train_dataset[69] # 查看第70张图片和标签信息
img2, label2 = train_dataset[70] # 查看第71张图片和标签信息
# 图像显示
cv.imshow("image1", img1)
cv.imshow("image2", img2)
cv.waitKey(0)
cv.destroyAllWindows()