可微TopK算子

形式及推导

形式:前向计算如下所示,

\[\text{TopK}(\vec{x}, k) = \sigma(\vec{x}+\Delta(\vec{x}, k)) \]

注意\(\Delta(\cdot)\)满足限制条件\(\sum \Delta(\vec{x}, k) = k\),并且\(\sigma(x) = \frac{1}{1+\exp\{-x\}}\)


梯度推导:
\(f(\vec{x}, k) = \sigma(\vec{x}+\Delta(\vec{x}, k))\)

\[\frac{ \text{d} f(\vec{x}, k)_{i} }{ \text{d} x_{j} } = \frac{ \text{d} \sigma(x_{i}+\Delta(\vec{x}, k)) }{ \text{d} x_{j} } = \sigma'(x_i + \Delta(\vec{x})) \Big( \mathbb{I}_{i=j} + \frac{\text{d}\Delta(\vec{x})}{\text{d}x_j} \Big) \]

难点在于如何计算\(\frac{\text{d}\Delta(\vec{x})}{\text{d}x_j}\)

我们通过利用条件\(\sum \Delta(\vec{x}) = k\)来计算上述导数:

\[\frac{\text{d}k}{\text{d}x_j} = 0 = \sum_{i}\sigma'(x_i+\Delta(\vec{x}))\Big( \mathbb{I}_{i=j} + \frac{\text{d}{\Delta(\vec{x})}}{\text{d}x_{j}} \Big) = \sigma'(x_{\color\red j}+\Delta(\vec{x})) + \frac{\text{d}{\Delta(\vec{x})}}{\text{d}x_{j}} \sum_{i}\sigma'(x_i+\Delta(\vec{x})) \]

因此,我们可以得到:

\[\frac{\text{d}{\Delta(\vec{x})}}{\text{d}x_{j}} = \frac{ - \sigma'(x_{\color\red j} +\Delta(\vec{x})) }{ \sum_{i}\sigma'(x_i+\Delta(\vec{x})) } \]

向量版本:如果令\(v = \sigma'(\vec{x}+\Delta(\vec{x}))\),则雅可比矩阵为

\[J_{\text{TopK}}(\vec{x}) = \text{diag}(\vec{v}) - \frac{\vec{v}\vec{v}^{\top}}{\Vert\vec{v}\Vert_1} \]

其他细节:如何计算出\(\Delta(\vec{x})=k\)?可以通过二分法快速找到该函数的合适值。

实现

# %% differentiable top-k function
import torch
from torch.func import vmap, grad
from torch.autograd import Function
import torch.nn as nn

sigmoid = torch.sigmoid
sigmoid_grad = vmap(vmap(grad(sigmoid)))


class TopK(Function):
    @staticmethod
    def forward(ctx, xs, k):
        ts, ps = _find_ts(xs, k)
        ctx.save_for_backward(xs, ts)
        return ps

    @staticmethod
    def backward(ctx, grad_output):
        # Compute vjp, that is grad_output.T @ J.
        xs, ts = ctx.saved_tensors
        # Let v = sigmoid'(x + t)
        v = sigmoid_grad(xs + ts)
        s = v.sum(dim=1, keepdims=True)
        # Jacobian is -vv.T/s + diag(v)
        uv = grad_output * v
        t1 = -uv.sum(dim=1, keepdims=True) * v / s
        return t1 + uv, None


@torch.no_grad()
def _find_ts(xs, k):
    # (batch_size, input_dim)
    _, n = xs.shape
    assert 0 < k < n
    # Lo should be small enough that all sigmoids are in the 0 area.
    # Similarly Hi is large enough that all are in their 1 area.
    # (batch_size, 1)
    lo = -xs.max(dim=1, keepdims=True).values - 10
    hi = -xs.min(dim=1, keepdims=True).values + 10
    for iteration in range(64):
        mid = (hi + lo) / 2
        subject = sigmoid(xs + mid).sum(dim=1)
        mask = subject < k
        lo[mask] = mid[mask]
        hi[~mask] = mid[~mask]
    ts = (lo + hi) / 2
    return ts, sigmoid(xs + ts)


def test_check():
    topk = TopK.apply
    xs = torch.randn(2, 10)
    ps = topk(xs, 2)
    print(f"{xs=}")
    print(f"{ps=}")
    print(f"{ps.sum(dim=1)=}")

    from torch.autograd import gradcheck

    input = torch.randn(20, 10, dtype=torch.double, requires_grad=True)
    for k in range(1, 10):
        print(k, gradcheck(topk, (input, k), eps=1e-6, atol=1e-4))


def sgd_update():
    topk = TopK.apply
    batch_size = 2
    k = 2
    tau = 10
    xs = torch.randn(batch_size, 10, dtype=torch.double, requires_grad=True)
    target = torch.zeros_like(xs)
    target[torch.arange(batch_size), torch.argsort(xs, descending=True)[:, :k].T] = 1.0
    print(f"{xs=}")
    print(f"{target=}")
    loss_fn = nn.MSELoss()
    learning_rate = 1

    def fn(x):
        x = x * tau
        return topk(x, k)

    for iteration in range(1, 1000 + 1):
        ws = nn.Parameter(data=xs, requires_grad=True)
        ps = fn(ws)
        loss = loss_fn(ps.view(-1), target.view(-1))
        loss.backward()
        xs = ws - learning_rate * ws.grad
        if iteration % 100 == 0:
            print(f"{iteration=} {fn(xs)=}")


sgd_update()

相关资料

Differentiable top-k function - Stach Exchange
Softmax后传:寻找Top-K的光滑近似 - 科学空间

posted @ 2024-09-25 17:04  WrRan  阅读(66)  评论(0编辑  收藏  举报