[BZOJ3561]DZY Loves Math VI

Description
给定正整数n,m。求

\[\sum\limits_{i=1}^n\sum\limits_{j=1}^mlcm(i,j)^{\gcd(i,j)} \]

Input
一行两个整数n,m。

Output
一个整数,为答案模1000000007后的值。

Sample Input
5 4

Sample Output
424

HINT
数据规模:
1<=n,m<=500000,共有3组数据。


首先推柿子

\[\sum\limits_{i=1}^n\sum\limits_{j=1}^mlcm(i,j)^{\gcd(i,j)} \]

\[\sum\limits_{i=1}^n\sum\limits_{j=1}^m(\dfrac{i\times j}{\gcd(i,j)})^{\gcd(i,j)} \]

\[\sum\limits_{d=1}^n\sum\limits_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum\limits_{j=1}^{\lfloor\frac{m}{d}\rfloor}(\dfrac{d^2\times i\times j}{d})^d[\gcd(i,j)=1] \]

\[\sum\limits_{d=1}^nd^d\sum\limits_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum\limits_{j=1}^{\lfloor\frac{m}{d}\rfloor}i^d\times j^d\sum\limits_{x|i,x|j}\mu(x) \]

\[\sum\limits_{d=1}^nd^d\sum\limits_{x=1}^{\lfloor\frac{n}{d}\rfloor}\mu(x)\times x^{2d}\sum\limits_{i=1}^{\lfloor\frac{n}{dx}\rfloor}i^d\sum\limits_{j=1}^{\lfloor\frac{m}{dx}\rfloor}j^d \]

然后设\(T=dx\),然后就。。。布星,推不下去了
发现\(m\leqslant 5×10^5\),那不就得了,直接这样求就好,枚举d的时候,维护一下\(f(n)=\sum\limits_{i=1}^n i^d\)即可,复杂度约为\(O(m\log m)\)

/*program from Wolfycz*/
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x7f7f7f7f
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline int read(){
	int x=0,f=1;char ch=getchar();
	for (;ch<'0'||ch>'9';ch=getchar())	if (ch=='-')    f=-1;
	for (;ch>='0'&&ch<='9';ch=getchar())	x=(x<<1)+(x<<3)+ch-'0';
	return x*f;
}
inline void print(int x){
	if (x>=10)	print(x/10);
	putchar(x%10+'0');
}
const int N=5e5,p=1e9+7;
int prime[N+10],miu[N+10];
bool inprime[N+10];
void prepare(){
	int tot=0; miu[1]=1;
	for (int i=2;i<=N;i++){
		if (!inprime[i])	prime[++tot]=i,miu[i]=-1;
		for (int j=1;j<=tot&&prime[j]*i<=N;j++){
			inprime[i*prime[j]]=1;
			if (i%prime[j]==0)	break;
			miu[i*prime[j]]=-miu[i];
		}
	}
}
int mlt(int a,int b){
	int res=1;
	for (;b;b>>=1,a=1ll*a*a%p)	if (b&1)	res=1ll*res*a%p;
	return res;
}
int val[N+10],sum[N+10];
int main(){
	prepare();
	int n=read(),m=read(),Ans=0;
	if (n>m)	swap(n,m);
	for (int i=1;i<=m;i++)	val[i]=1;
	for (int d=1;d<=n;d++){
		int x=mlt(d,d),res=0,limn=n/d,limm=m/d;
		for (int i=1;i<=limm;i++)	val[i]=1ll*val[i]*i%p,sum[i]=(sum[i-1]+val[i])%p;
		for (int i=1;i<=limn;i++){
			if (!miu[i])	continue;
			res=(res+1ll*val[i]*val[i]%p*sum[limn/i]%p*sum[limm/i]%p*miu[i]+p)%p;
		}
		Ans=(Ans+1ll*x*res%p)%p;
	}
	printf("%d\n",Ans);
	return 0;
}
posted @ 2018-08-17 15:40  Wolfycz  阅读(357)  评论(0编辑  收藏  举报