[NOI2005]维修数列

Description
请写一个程序,要求维护一个数列,支持以下 6 种操作:
请注意,格式栏 中的下划线‘ _ ’表示实际输入文件中的空格

Input
输入的第1 行包含两个数N 和M(M ≤20 000),N 表示初始时数列中数的个数,M表示要进行的操作数目。
第2行包含N个数字,描述初始时的数列。
以下M行,每行一条命令,格式参见问题描述中的表格。
任何时刻数列中最多含有500 000个数,数列中任何一个数字均在[-1 000, 1 000]内。
插入的数字总数不超过4 000 000个,输入文件大小不超过20MBytes。

Output
对于输入数据中的GET-SUM和MAX-SUM操作,向输出文件依次打印结果,每个答案(数字)占一行。

Sample Input
9 8
2 -6 3 5 1 -5 -3 6 3
GET-SUM 5 4
MAX-SUM
INSERT 8 3 -5 7 2
DELETE 12 1
MAKE-SAME 3 3 2
REVERSE 3 6
GET-SUM 5 4
MAX-SUM

Sample Output
-1
10
1
10

HINT


splay操作大合集啊。。。这题过了splay基本操作也差不多毕业了。插入操作记得不能插入链,要递归建树插入;删除的话要记得写个回收站,不然空间会炸;区间操作打个标记就好;区间求和记个sum数组就好;区间最大连续子串和,首先我们可以参考线段树的区间最大连续和,但是线段树和splay有点区别,因此我们只需要做点小(da)小(da)的改动即可

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x7f7f7f7f
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline int read(){
	int x=0,f=1;char ch=getchar();
	for (;ch<'0'||ch>'9';ch=getchar())	if (ch=='-')    f=-1;
	for (;ch>='0'&&ch<='9';ch=getchar())	x=(x<<1)+(x<<3)+ch-'0';
	return x*f;
}
inline void print(int x){
	if (x>=10)     print(x/10);
	putchar(x%10+'0');
}
const int N=5e5;
int stack[N+10],top,v[N+10];
struct Splay{
	#define T(x) (tree[f[x]][1]==x)
	#define ls(x) tree[x][0]
	#define rs(x) tree[x][1]
	int tree[N+10][2],f[N+10],size[N+10],val[N+10];
	int sum[N+10],L[N+10],R[N+10],Max[N+10];
	bool rev[N+10],mark[N+10];
	int root,len;
	void cov_tag(int x,int v){
		if (!x)	return;
		sum[x]=size[x]*v;
		val[x]=v;
		L[x]=R[x]=Max[x]=max(v,sum[x]);
		mark[x]=1,rev[x]=0;
	}
	void rev_tag(int x){
		if (!x)	return;
		swap(L[x],R[x]);
		swap(ls(x),rs(x));
		rev[x]^=1;
	}
	void pushdown(int x){
		if (rev[x]){
			rev_tag(ls(x));
			rev_tag(rs(x));
			rev[x]=0;
		}
		if (mark[x]){
			cov_tag(ls(x),val[x]),
			cov_tag(rs(x),val[x]);
			mark[x]=0;
		}
	}
	void updata(int x){
		size[x]=size[ls(x)]+size[rs(x)]+1;
		Max[x]=max(max(Max[ls(x)],Max[rs(x)]),max(0,R[ls(x)])+val[x]+max(0,L[rs(x)]));
		L[x]=max(L[ls(x)],sum[ls(x)]+val[x]+max(0,L[rs(x)]));
		R[x]=max(R[rs(x)],sum[rs(x)]+val[x]+max(0,R[ls(x)]));
		sum[x]=sum[ls(x)]+sum[rs(x)]+val[x];
	}
	int get(){
		int x;
		x=top?stack[top--]:++len;
		ls(x)=rs(x)=f[x]=0;
		rev[x]=mark[x]=0;
		size[x]=1;
		sum[x]=L[x]=R[x]=val[x]=-1e9;
		return x;
	}
	void build(int fa,int l,int r,int &x){
		if (l>r)	return;
		int mid=(l+r)>>1;
		x=get(),f[x]=fa,val[x]=v[mid];
		if (l==r){
			size[x]=1;
			Max[x]=L[x]=R[x]=sum[x]=val[x];
			return;
		}
		build(x,l,mid-1,ls(x)),
		build(x,mid+1,r,rs(x));
		updata(x);
	}
	void init(int n){
		L[0]=R[0]=Max[0]=-1e9;
		len=2,root=1;
		rs(1)=size[1]=2,L[1]=R[1]=val[1]=sum[1]=-1e9;
		f[2] =size[2]=1,L[2]=R[2]=val[2]=sum[2]=-1e9;
		for (int i=1;i<=n;i++)	v[i]=read();
		build(2,1,n,ls(2));
		updata(2),updata(1);
	}
	void move(int x){
		int fa=f[x],son=tree[x][T(x)^1];
		tree[x][T(x)^1]=fa;
		tree[fa][T(x)]=son;
		if (son)	f[son]=fa;
		f[x]=f[fa];
		if (f[x])	tree[f[x]][T(fa)]=x;
		f[fa]=x;
		updata(fa),updata(x);
	}
	void splay(int x){
		while (f[x]){
			if (f[f[x]])	T(x)==T(f[x])?move(f[x]):move(x);
			move(x);
		}
		root=x;
	}
	int find(int x,int i){
		pushdown(i);
		if (size[ls(i)]+1==x)	return i;
		if (x<=size[ls(i)])	return find(x,ls(i));
		return find(x-size[ls(i)]-1,rs(i));
	}
	void insert(){
		int x=read()+1,y=x+1,tot=read();
		x=find(x,root),splay(x);
		y=find(y,root),splay(y);
		if (f[x]!=root)	move(x);
		for (int i=1;i<=tot;i++)	v[i]=read();
		build(x,1,tot,rs(x));
		updata(x),updata(y);
	}
	void reuse(int x){
		if (!x)	return;
		stack[++top]=x;
		reuse(ls(x)),reuse(rs(x));
	}
	void Del(){
		int x=read(),y=read()+x-1;
		x=find(x,root),splay(x);
		y=find(y+2,root),splay(y);
		if (f[x]!=root)	move(x);
		reuse(rs(x));
		f[rs(x)]=0,rs(x)=0;
		updata(x),updata(y);
	}
	void cover(){
		int x=read(),y=read()+x-1,v=read();
		x=find(x,root),splay(x);
		y=find(y+2,root),splay(y);
		if (f[x]!=root)	move(x);
		cov_tag(rs(x),v);
		updata(x),updata(y);
	}
	void reverse(){
		int x=read(),y=read()+x-1;
		x=find(x,root),splay(x);
		y=find(y+2,root),splay(y);
		if (f[x]!=root)	move(x);
		rev_tag(rs(x));
		updata(x),updata(y);
	}
	void query_sum(){
		int x=read(),y=read()+x-1;
		x=find(x,root),splay(x);
		y=find(y+2,root),splay(y);
		if (f[x]!=root)	move(x);
		printf("%d\n",sum[rs(x)]);
	}
	void query_max(){printf("%d\n",Max[root]);}
}T;
char s[10];
int main(){
	int n=read(),m=read();
	T.init(n);
	for (int i=1;i<=m;i++){
		scanf("%s",s);
		//第3位都不一样,我懒
		if (s[2]=='L')	T.Del();
		if (s[2]=='K')	T.cover();
		if (s[2]=='S')	T.insert();
		if (s[2]=='V')	T.reverse();
		if (s[2]=='T')	T.query_sum();
		if (s[2]=='X')	T.query_max();
	}
	return 0;
}
posted @ 2018-08-15 10:40  Wolfycz  阅读(366)  评论(0编辑  收藏  举报